Skip to main content
Log in

Gas-Phase Hydrodechlorination of Chlorobenzene over Alumina-Supported Nickel Catalysts: Effect of Support Structure and Modification with Heteropoly Acid HSiW

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The physicochemical and catalytic properties of 6%Ni/Al2O3 catalysts in the gas-phase hydrodechlorination of chlorobenzene (CB) are studied. The catalysts are synthesized by supporting nickel nitrate on two types of alumina—A (synthesized by aluminum isopropoxide hydrolysis) and E (manufactured by Engelhard)—with different morphologies and textures; some of the samples are unmodified, and some are modified by depositing 20% heteropoly acid (HPA) H8Si(W2O7)6 ⋅ nH2O. To prevent the HPA from decomposition, the air calcining and reduction of the modified materials are conducted at relatively low temperatures (250 and 330°C, respectively). To provide an adequate comparison, the catalysts containing no HPA are subjected to a similar treatment. Temperature-programmed reduction (TPR) reveals that air calcining at 250°C does not provide the complete conversion of the original nickel nitrate to oxide; nickel nitrates and hydroxynitrates are present in the catalyst precursors; their content decreases upon modification with the HPA. Differences in the composition and strength of Lewis acid sites on the surface of two types of Al2O3 lead to dissimilar coordination of nitrate and differences in nickel reducibility, as revealed by TPR, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy with CO adsorption, and in situ X-ray photoelectron spectroscopy (XPS). Nickel contained in Ni/Al2O3(E) undergoes reduction somewhat more readily than nickel in Ni/Al2O3(A) does; however, the conditions used in this study provide the reduction of only a small portion of nickel in the two catalysts. According to in situ XPS, TPR, and DRIFT spectroscopy with CO adsorption, the modification of Ni/Al2O3 with the HPA leads to a further change in the acidic properties and the coordination of nickel nitrate during impregnation and an increase in nickel reducibility; it prevents nickel from migration from the surface into the bulk of the sample and leads to the formation of new active sites owing to the strong nickel–tungsten interaction in the HPA. Depending on the nature of the support, modification with the HPA leads to an improvement (Ni/HPA/Al2O3(A)) or deterioration (Ni/HPA/Al2O3(E)) of the catalytic efficiency of the samples. At high temperatures, the benzene selectivity of the HPA-modified catalysts decreases owing to the formation of cyclohexane. The catalyst efficiency increases in the following order: Ni/HPA/Al2O3(E) < Ni/Al2O3(A) < Ni/Al2O3(E) < Ni/HPA/Al2O3(A). The most active catalyst—Ni/HPA/Al2O3(A)—exhibits the highest stability in long-term tests with an increase and subsequent decrease in temperature. The effect of nickel reducibility on the catalyst efficiency in CB hydrodechlorination is more significant than the effect of differences in texture and nickel content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Lokteva, E.S., Golubina, E.V., Likholobov, V.A., and Lunin, V.V., Disposal of Chlorine-Containing Wastes, in Chemistry Beyond Chlorine, Berlin: Springer, 2016, p. 559.

    Google Scholar 

  2. Wei, G.L., Liang, X.L., Li, D.Q., Zhuo, M.N., Zhang, S.Y., Huang, Q.X., and Yuan, Z.J., Environ. Int., 2016, vol. 92, p. 373.

    Article  PubMed  CAS  Google Scholar 

  3. van Mourik, L.M., Gaus, C., Leonards, P.E.G., and de Boer, J., Chemosphere, 2016, vol. 155, p. 415.

    Article  CAS  PubMed  Google Scholar 

  4. Huang, B., Lei, C., Wei, C., and Zeng, G., Environ. Int., 2014, vol. 71, p. 118.

    Article  CAS  PubMed  Google Scholar 

  5. Keane, M.A., ChemCatChem, 2011, vol. 3, p. 800.

    Article  CAS  Google Scholar 

  6. Amorim, C. and Keane, M.A., J. Hazard. Mater., 2012, vol. 211, p. 208.

    Article  PubMed  CAS  Google Scholar 

  7. Hashimoto, Y., Uemichi, Y., and Ayame, A., J. Jpn. Pet. Inst., 2005, vol. 48, p. 127.

    Article  CAS  Google Scholar 

  8. Lokteva, E.S., Golubina, E.V., Antonova, M.V., Klokov, S.V., Maslakov, K.I., Egorov, A.V., and Likholobov, V.A., Kinet. Catal., 2015, vol. 56, p. 764.

    Article  CAS  Google Scholar 

  9. Navalikhina, M.D., Kavalerskaya, N.E., Lokteva, E.S., Peristyi, A.A., Golubina, E.V., and Lunin, V.V., Russ. J. Phys. Chem. A, 2012, vol. 86, p. 1675.

    Google Scholar 

  10. Li, F., Liu, Y., Wang, L., Li, X., Ma, T., and Gong, G., Application of Heterogeneous Catalysts in Dechlorination of Chlorophenols, in Organochlorine by Aurel Nuro, London: IntechOpen, 2018, p. 346.

    Google Scholar 

  11. Meshesha, B.T., Chimenta, R.J., Medina, F., Sueiras, J.E., Cesteros, Y., Salagre, P., and Figueras, F., Appl. Catal., B, 2009, vol. 87, p. 70.

    Article  CAS  Google Scholar 

  12. Coq, B., Ferrat, G., and Figueras, F., J. Catal., 1986, vol. 101, p. 434.

    Article  CAS  Google Scholar 

  13. Benitez, J.L. and Del Angel, G., React. Kinet. Catal. Lett., 2000, vol. 70, p. 67.

    Article  CAS  Google Scholar 

  14. Gentsler, A.G., Simagina, V.I., Netskina, O.V., Komova, O.V., Tsybulya, S.V., and Abrosimov, O.G., Kinet. Catal., 2007, vol. 48, p. 60.

    Article  CAS  Google Scholar 

  15. Klokov, S.V., Lokteva, E.S., Golubina, E.V., Chernavskii, P.A., Maslakov, K.I., Egorova, T.B., Chernyak, S.A., Minin, A.S., and Konev, A.S., Appl. Surf. Sci., 2019, vol. 463, p. 395.

    Article  CAS  Google Scholar 

  16. de Jong, V. and Louw, R., Appl. Catal., A, 2004, vol. 271, p. 153.

  17. Srikanth, C.S., Kumar, V.P., Viswanadham, B., and Chary, K.V.R., Catal. Commun., 2011, vol. 13, p. 69.

    Article  CAS  Google Scholar 

  18. Diaz, E., Mohedano, A.F., Casas, J.A., Shalaby, C., Eser, S., and Rodriguez, J.J., Appl. Catal., B, 2016, vol. 186, p. 151.

    Article  CAS  Google Scholar 

  19. Comandella, D., Woszidlo, S., Georgi, A., Kopinke, F.-D., and Mackenzie, K., Appl. Catal., B, 2016, vol. 186, p. 204.

    Article  CAS  Google Scholar 

  20. Amorim, C., Wang, X., and Keane, M.A., Chin. J. Catal., 2011, vol. 32, p. 746.

    Article  CAS  Google Scholar 

  21. Ruiz-García, C., Heras, F., Gilarranz, M.Á., Aranda, P., and Ruiz-Hitzky, E., Appl. Clay Sci., 2018, vol. 161, p. 132.

    Article  CAS  Google Scholar 

  22. Arevalo-Bastante, A., Álvarez-Montero, M.A., Bedia, J., Gómez-Sainero, L.M., and Rodriguez, J.J., Appl. Catal., B, 2015, vol. 179, p. 551.

    Article  CAS  Google Scholar 

  23. Ordóñez, S., Sastre, H., and Díez, F.V., Appl. Catal., B, 2000, vol. 25, p. 49.

    Article  Google Scholar 

  24. Babu, N.S., Lingaiah, N., Pasha, N., Kumar, J.V., and Prasad, P.S.S., Catal. Today, 2009, vol. 141, p. 120.

    Article  CAS  Google Scholar 

  25. Lingaiah, N., Prasad, P.S.S., Rao, P.K., Berry, F.J., and Smart, L.E., Catal. Commun., 2002, vol. 3, p. 391.

    Article  CAS  Google Scholar 

  26. Jujjuri, S., Ding, E., Shore, S.G., and Keane, M.A., Appl. Organomet. Chem., 2003, vol. 17, p. 493.

    Article  CAS  Google Scholar 

  27. Shao, Y., Xu, Z., Wan, H., Chen, H., Liu, F., Li, L., and Zheng, S., J. Hazard. Mater., 2010, vol. 179, p. 135.

    Article  CAS  PubMed  Google Scholar 

  28. Babu, N.S., Lingaiah, N., and Prasad, P.S.S., Appl. Catal., B, 2012, vol. 111, p. 309.

    Article  CAS  Google Scholar 

  29. Trueba, M. and Trasatti, S.P., Eur. J. Inorg. Chem., 2005, vol. 17, p. 3393.

    Article  CAS  Google Scholar 

  30. Kim, P., Kim, Y., Kim, H., Song, I.K., and Yi, J., J. Mol. Catal. A: Chem., 2004, vol. 219, p. 87.

    Article  CAS  Google Scholar 

  31. Bonarowska, M., Kaszkur, Z., Kępiński, L., and Karpiński, Z., Appl. Catal., B, 2010, vol. 99, p. 248.

    Article  CAS  Google Scholar 

  32. Babu, N.S., Lingaiah, N., Kumar, J.V., and Prasad, P.S.S., Appl. Catal., A, 2009, vol. 367, p. 70.

  33. Díaz, E., Faba, L., and Ordóñez, S., Appl. Catal., B, 2011, vol. 104, p. 415.

    Article  CAS  Google Scholar 

  34. Gómez-Sainero, L.M., Seoane, X.L., Fierro, J.L.G., and Arcoya, A., J. Catal., 2002, vol. 209, p. 279.

    Article  CAS  Google Scholar 

  35. Navalikhina, M.D. and Krylov, O.V., Kinet. Catal., 2001, vol. 42, p. 264.

    Article  CAS  Google Scholar 

  36. Eswaramoorthi, I., Geetha Bhavani, A., and Lingappan, N., Appl. Catal., A, 2003, vol. 253, p. 469.

  37. Puello-Polo, E., Diaz, Y., and Brito, J.L., Catal. Commun., 2017, vol. 99, p. 89.

    Article  CAS  Google Scholar 

  38. Lee, K.-Y. and Misono, M., Heteropoly Compounds, in Handbook of Heterogeneous Catalysis, Weinheim: Wiley, 2008, 2nd ed., p. 318.

    Google Scholar 

  39. Okuhara, T., Mizuno, N., and Misono, M., Catalytic Chemistry of Heteropoly Compounds, in Advances in Catalysis, Cambridge: Academic Press, 1996, vol. 41, p. 113.

    Google Scholar 

  40. Alcañiz-Monge, J., El Bakkali, B., Trautwein, G., and Reinoso, S., Appl. Catal., B, 2018, vol. 224, p. 194.

    Article  CAS  Google Scholar 

  41. Golubina, E.V., Lokteva, E.S., Gurbanova, U.D., Kharlanov, A.N., Egorova, T.B., Lipatova, I.A., Vlaskin, M.S., and Shkol’nikov, E.I., Kinet. Catal., 2019, vol. 60, p. 297.

    Article  CAS  Google Scholar 

  42. Xi, Y., Chen, Z., Gan Wei Kiat, V., Huang, L., and Cheng, H., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 9698.

    Article  CAS  PubMed  Google Scholar 

  43. Tarlani, A., Abedini, M., Khabaz, M., and Amini, M.M., J. Colloid Interf. Sci., 2006, vol. 292, p. 486.

    Article  CAS  Google Scholar 

  44. Green, S.V., Kuzmin, A., Purans, J., Granqvist, C.G., and Niklasson, G.A., Thin Solid Films, 2011, vol. 519, p. 2062.

    Article  CAS  Google Scholar 

  45. Liang, Y., Zhao, M., Wang, J., Sun, M., Li, S., Huang, Y., Zhong, L., Gong, M., and Chen, Y., J. Ind. Eng. Chem., 2017, vol. 54, p. 359.

    Article  CAS  Google Scholar 

  46. Newman, A.D., Brown, D.R., Siril, P., Lee, A.F., and Wilson, K., Phys. Chem. Chem. Phys., 2006, vol. 8, p. 2893.

    Article  CAS  PubMed  Google Scholar 

  47. Liu, L., Wang, B., Du, Y., and Borgna, A., Appl. Catal., A, 2015, vol. 489, p. 32.

  48. Shkol'nikov, E.I. and Volkov, V.V., Doklady RAN. Fiz. Khim., 2001, vol. 378, No. 4, p. 507.

    CAS  Google Scholar 

  49. Shkolnikov, E.I., Shaitura, N.S., and Vlaskin, M.S., J. Supercrit. Fluids, 2013, vol. 73, p. 10.

    Article  CAS  Google Scholar 

  50. Brown, G.M., Noe-Spirlet, M.R., Busing, W.R., and Levy, H.A., Acta Crystallogr., Sect. B: Struct. Sci., 1977, vol. 33, p. 1038.

    Article  Google Scholar 

  51. Hernández-Cortez, J.G., Manríques, M., Lartundo-Rojas, L., and López-Salinas, E., Catal. Today, 2014, vols. 220–222, p. 32.

    Article  CAS  Google Scholar 

  52. Rao, P.M., Wolfson, A., Kababya, S., Vega, S., and Landau, M.V., J. Catal., 2005, vol. 232, p. 210.

    Article  CAS  Google Scholar 

  53. de Mattos, F.C.G., de Carvalho, E.N.C.B., de Freitas, E.F., Paiva, M.F., Ghesti, G.F., de Macedo, J.L., Dias, S.C.L., and Dias, J.A., J. Braz. Chem. Soc., 2017, vol. 28, p. 336.

    Google Scholar 

  54. Jin, H., Yi, X., Sun, X., Qiu, B., Fang, W., Weng, W., and Wan, H., Fuel, 2010, vol. 89, p. 1953.

    Article  CAS  Google Scholar 

  55. Shen, H., Li, Y., Huang, S., Cai, K., Cheng, Z., Lv, J., and Ma, X., Catal. Today, 2019, vol. 330, p. 117.

    Article  CAS  Google Scholar 

  56. Atia, H., Armbruster, U., and Martin, A., J. Catal., 2008, vol. 258, p. 71.

    Article  CAS  Google Scholar 

  57. Li, C. and Chen, Y.W., Thermochim. Acta, 1995, vol. 256, p. 457.

    Article  CAS  Google Scholar 

  58. Chary, K.V.R., Ramana Rao, P.V., and Venkat Rao, V., Catal. Commun., 2008, vol. 9, p. 886.

    Article  CAS  Google Scholar 

  59. Małecka, B., Łącz, A., Drożdż, E., and Małecki, A., J. Therm. Anal. Calorim., 2015, vol. 119, p. 1053.

    Article  CAS  Google Scholar 

  60. Elmasry, M.A.A., Gaber, A., and Khater, E.M.H., J. Therm. Anal. Calorim., 1998, vol. 52, p. 489.

    Article  CAS  Google Scholar 

  61. Ho, S.C. and Chou, T.C., Ind. Eng. Chem. Res., 1995, vol. 34, p. 2279.

    Article  CAS  Google Scholar 

  62. Scheffer, B., Molhoek, P., and Moulijn, J.A., Appl. Catal., 1989, vol. 46, p. 11.

    Article  CAS  Google Scholar 

  63. Bartholomew, C.H. and Farrauto, R.J., J. Catal., 1976, vol. 45, p. 41.

    Article  CAS  Google Scholar 

  64. Weigel, D., Imelik, B., and Laffitte, P., Bull. Soc. Chim. Fr., 1962, p. 345.

  65. Shimoda, N., Koide, N., Kasahara, M., Mukoyama, T., and Satokawa, S., Fuel, 2018, vol. 232, p. 485.

    Article  CAS  Google Scholar 

  66. Molina, R. and Poncelet, G., J. Catal., 1998, vol. 173, p. 257.

    Article  CAS  Google Scholar 

  67. Lamber, R. and Schulz-Ekloff, G., Surf. Sci., 1991, vol. 258, p. 107.

    Article  CAS  Google Scholar 

  68. Rynkowski, J.M., Paryjczak, T., and Lenik, M., Appl. Catal., A, 1993, vol. 106, p. 73.

  69. Chen, D., Christensen, K.O., Ochoa-Fernández, E., Yu, Z., Tøtdal, B., Latorre, N., Monzón, A., and Holmen, A., J. Catal., 2005, vol. 229, p. 82.

    Article  CAS  Google Scholar 

  70. Cao, Y., Wang, J., Li, Q., Yin, N., Liu, Z., Kang, M., and Zhu, Y., J. Fuel Chem. Technol., 2013, vol. 41, p. 943.

    Article  CAS  Google Scholar 

  71. Palcheva, R., Spozhakina, A., Tyuliev, G., Jiratova, K., and Petrov, L., Kinet. Catal., 2007, vol. 48, no. 6, p. 847.

    Article  CAS  Google Scholar 

  72. Palcheva, R., Dimitrov, L., Tyuliev, G., Spojakina, A., and Jiratova, K., Appl. Surf. Sci., 2013, vol. 265, p. 309.

    Article  CAS  Google Scholar 

  73. Mangnus, P.J., Bos, A., and Moulijn, J.A., J. Catal., 1994, vol. 146, p. 437.

    Article  CAS  Google Scholar 

  74. Southmayd, D.W., Contescu, C., and Schwarz, J.A., J. Chem. Soc., Faraday Trans., 1993, vol. 89, p. 2075.

    Article  CAS  Google Scholar 

  75. Yan, Y., Dai, Y., He, H., Yu, Y., and Yang, Y., Appl. Catal., B, 2016, vol. 196, p. 108.

    Article  CAS  Google Scholar 

  76. Golubina, E.V., Peristyy, A.A., Lokteva, E.S., Maslakov, K.I., and Egorov, A.V., React. Kinet. Mech. Catal., 2020.

  77. Velon, A. and Olefjord, I., Oxid. Met., 2001, vol. 56, p. 415.

    Article  CAS  Google Scholar 

  78. Legrand, D.L., Nesbitt, H.W., and Bancroft, G.M., Am. Mineral., 1998, vol. 83, p. 1256.

    Article  CAS  Google Scholar 

  79. Mansour, A.N., Surf. Sci. Spectra, 1994, vol. 3, p. 211.

    Article  CAS  Google Scholar 

  80. Salagre, P., Fierro, J.L.G., Medina, F., and Sueiras, J.E., J. Mol. Catal. A: Chem., 1996, vol. 106, p. 125.

    Article  CAS  Google Scholar 

  81. Ng, K.T. and Hercules, D.M., J. Phys. Chem., 1976, vol. 80, p. 2094.

    Article  CAS  Google Scholar 

  82. Shpak, A.P., Korduban, A.M., Medvedskij, M.M., and Kandyba, V.O., J. Electron Spectrosc., 2007, vol. 156, p. 172.

    Article  CAS  Google Scholar 

  83. Jalil, P.A., Faiz, M., Tabet, N., Hamdan, N.M., and Hussain, Z., J. Catal., 2003, vol. 217, p. 292.

    Article  CAS  Google Scholar 

  84. Winoto, H.P., Fikri, Z.A., Ha, J.M., Park, Y.K., Lee, H., Suh, D.J., and Jae, J., Appl. Catal., B, 2019, vol. 241, p. 588.

    Article  CAS  Google Scholar 

  85. Watmanee, S., Suriye, K., Praserthdam, P., and Panpranot, J., Top. Catal., 2018, vol. 61, p. 1615.

    Article  CAS  Google Scholar 

  86. Garbarino, G., Campodonico, S., Perez, A.R., Carnasciali, M.M., Riani, P., Finocchio, E., and Busca, G., Appl. Catal., A, 2013, vol. 452, p. 163.

  87. Davydov, A.A., IK-spektroskopiya v khimii poverkhnosti okislov (Infrared Spectroscopy in Chemistry of Surface Oxides), Novosibirsk: Nauka, 1984.

  88. Zarfl, J., Ferri, D., Schildhauer, T.J., Wambach, J., and Wokaun, A., Appl. Catal., A, 2015, vol. 495, p. 104.

  89. Mihaylov, M., Lagunov, O., Ivanova, E., and Hadjiivanov, K., Top. Catal., 2011, vol. 54, p. 308.

    Article  CAS  Google Scholar 

  90. Peri, J.B., J. Catal., 1984, vol. 86, p. 84.

    Article  CAS  Google Scholar 

  91. Zaki, M.I., Stud. Surf. Sci. Catal., 1995, vol. 100, p. 569.

    Article  Google Scholar 

  92. Liu, Y., Sheng, W., Hou, Z., and Zhang, Y., RSC Adv., 2018, vol. 8, p. 2123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hadjiivanov, K.I. and Vayssilov, G.N., Characterization of Oxide Surfaces and Zeolites by Carbon Monoxide as an IR Probe Molecule, in Advances in Catalysis, Cambridge: Academic Press, 2002, p. 307.

    Google Scholar 

  94. Morterra, C. and Magnacca, G., Catal. Today, 1996, vol. 27, p. 497.

    Article  CAS  Google Scholar 

  95. Morterra, C., Bolis, V., and Magnacca, G., Langmuir, 1994, vol. 10, p. 1812.

    Article  CAS  Google Scholar 

  96. Li, H., Xu, Y., Gao, C., and Zhao, Y., Catal. Today, 2010, vol. 158, p. 475.

    Article  CAS  Google Scholar 

  97. Kang, H., Jeong, Y.-K., and Oh, S.-T., Int. J. Refract. Met. Hard. Met., 2019, vol. 80, p. 69.

    Article  CAS  Google Scholar 

  98. Sarkar, A., Seth, D., Jiang, M., Ng, F.T.T., and Rempel, G.L., Top. Catal., 2014, vol. 57, p. 730.

    Article  CAS  Google Scholar 

  99. Cao, Y., Wang, J., Kang, M., and Zhu, Y., J. Mol. Catal. A: Chem., 2014, vol. 381, p. 46.

    Article  CAS  Google Scholar 

  100. Keane, M.A., Park, C., and Menini, C., Catal. Lett., 2003, vol. 88, p. 89.

    Article  CAS  Google Scholar 

  101. Park, C., Menini, C., Valverde, J.L., and Keane, M.A., J. Catal., 2002, vol. 211, p. 451.

    Article  CAS  Google Scholar 

  102. Choi, Y.H. and Lee, W.Y., Catal. Lett., 2000, vol. 67, p. 155.

    Article  CAS  Google Scholar 

  103. Gao, Z., Zhang, S., Ma, H., and Li, Z., J. Rare Earth, 2017, vol. 35, p. 977.

    Article  CAS  Google Scholar 

  104. Mogica-Betancourt, J.C., López-Benítez, A., Montiel-López, J.R., Massin, L., Aouine, M., Vrinat, M., Berhault, G., and Guevara-Lara, A., J. Catal., 2014, vol. 313, p. 9.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the Russian Foundation for Basic Research for support (project no. 20-53-10005 KO_a). This work was performed using the equipment purchased with funds of the Moscow University Development Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Ryaboshapka or E. S. Lokteva.

Additional information

Translated by M. Timoshinina

Abbreviations: CB, chlorobenzene; HDC, hydrodechlorination; HPA, heteropoly acid H8Si(W2O7)6nH2O; TPR, temperature-programmed reduction; XPS, X-ray photoelectron spectroscopy; DRIFT, diffuse reflectance infrared Fourier transform spectroscopy; BET, Brunauer–Emmett–Teller method; BJH, Barrett–Joyner–Halenda method; TA, thermal analysis; TG, thermogravimetry; DSC, differential scanning calorimetry; SEM, scanning electron microscopy; AAS, atomic adsorption spectroscopy; XRD, X-ray diffraction analysis; TEM, transmission electron microscopy; Eb, binding energy; LAS, Lewis acid site; SBET, specific surface area; Vpore, pore volume; Rpore, average pore size.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryaboshapka, D.A., Lokteva, E.S., Golubina, E.V. et al. Gas-Phase Hydrodechlorination of Chlorobenzene over Alumina-Supported Nickel Catalysts: Effect of Support Structure and Modification with Heteropoly Acid HSiW. Kinet Catal 62, 127–145 (2021). https://doi.org/10.1134/S0023158420060130

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0023158420060130

Keywords:

Navigation