Skip to main content
Log in

Theoretical Study of Interaction between Hydrogen and Small Pt–Sn Intermetallic Clusters

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

Small clusters, which simulate the active sites of Pt–Sn intermetallics exhibiting a high level of activity and selectivity in the deoxygenation reaction of esters without the loss of carbon mass to form C1, C2, and carbon oxides, are constructed and studied with the density functional theory. Molecular adsorption of hydrogen, dissociation of hydrogen molecules at Pt sites, and transition of adsorbed hydrogen atoms from Pt to Sn are considered. The introduction of Sn significantly decreases the affinity of platinum to hydrogen, so that the transition of H atoms to Sn atoms is facilitated with the increase in the amount of Sn. A comparison of the activation energies for such a transition with those of the possible association of hydrogen atoms on tin and the molecular desorption of H2 showed that the hydrogen spillover in the Pt–Sn intermetallics should not lead to a significant accumulation of hydrogen on tin. In other words, in contrast to Pt atoms, Sn atoms probably cannot serve as active sites of hydrogen adsorption in the deoxygenation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weishen, Y., Liwu, L., Yining, F., and Jingling, Z., Catal. Lett., 1992, vol. 12, nos. 1–3, p. 267.

    Article  Google Scholar 

  2. Hobson, M.C., Jr., Goresh, S.L., and Khare, G.P., J. Catal., 1993, vol. 142, no. 2, p. 641.

    Article  CAS  Google Scholar 

  3. Kuznetsov, V.I., Belyi, A.S., Yurchenko, E.N., Smolikov, M.D., Protasova, M.T., Zatolokina, E.V., and Duplyakin, V.K., J. Catal., 1986, vol. 99, no. 1, p. 159.

    Article  CAS  Google Scholar 

  4. Tsodikov, M.V., Chistyakov, A.V., and Netrusov, A.I., Produkty Biomassy i ikh prevrashcheniya v komponenty topliv i monomery (Products of Biomass and their Transformations into Components of Fuels and Monomers), Saarbrucken: LAMBERT Academic Publishing, 2017, vol. 181.

  5. Chistyakov, A.V., Zharova, P.A., Tsodikov, M.V., Shapovalov, S.S., Pasynskii, A.A., Murzin, V.Yu., Gekhman, A.E., and Moiseev, I.I., Dokl. Akad. Nauk, 2015, vol. 460, no. 1, p. 57.

    Google Scholar 

  6. Shapovalov, S.S., Pasynskii, A.A., Torubaev, Yu.V., Skabitskii, I.V., Sheer, M., and Bodenshtainer, M., Russ. J. Coord. Chem., 2014, vol. 40, no. 3, p. 131.

    Article  CAS  Google Scholar 

  7. Li, Y.-X. and Klabunde, K.J., J. Catal., 1990, vol. 126, no. 1, p. 173.

    Article  Google Scholar 

  8. Srinivasan, R. and Davis, B.H., Appl. Catal., A., 1992, vol. 87, no. 1, p. 45.

    Article  CAS  Google Scholar 

  9. Nava, N. and Viveros, T., Hyperfine Interact., 1999, vol. 122, nos. 1–2, p. 147.

    Article  CAS  Google Scholar 

  10. Nava, N., Morales, M.A., Vanoni, W., Toledo, J.A., Baggio-Saitovitch, E., and Viveros, T., Hyperfine Interact., 2001, vol. 134, no. 1, p. 81.

    Article  CAS  Google Scholar 

  11. Durussel, Ph., Massara, R., and Feschotte, P., J. Alloys Compd., 1994, vol. 215, nos. 1–2, p. 175.

    Article  CAS  Google Scholar 

  12. Borgna, A., Stagg, S.M., and Resasco, D.E., J. Phys. Chem. B, 1998, vol. 102, no. 26, p. 5077.

    Article  CAS  Google Scholar 

  13. Chistyakov, A.V., Kriventsov, V.V., Naumkin, A.V., Pereyaslavtsev, A.Yu., Zharova, P.A., and Tsodikov, M.V., Neftekhimiya, 2016, vol. 56, no. 4, p. 375.

    Google Scholar 

  14. Huang, X., Su, Y., Sai, L., Zhao, J., and Kumar, V., J. Cluster Sci., 2015, vol. 26, p. 389.

    Article  CAS  Google Scholar 

  15. Kong, C., Han, Y.-X., Hou, L.-J., Wu, B.-W., and Geng, Z.-Y., Int. J. Hydrogen Energy, 2017, vol. 42, no. 25, p. 16157.

    Article  CAS  Google Scholar 

  16. Hauser, A.W., Horn, P.R., Head-Gordon, M., and Bell, A.T., Phys. Chem. Chem. Phys., 2016, vol. 18, no. 16, p. 10906.

    Article  CAS  PubMed  Google Scholar 

  17. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett., 1996, vol. 77, no. 18, p. 3865.

    Article  CAS  Google Scholar 

  18. Stevens, W.J., Basch, H., and Krauss, M., J. Chem. Phys., 1984, vol. 81, no. 12, p. 6026.

    Article  Google Scholar 

  19. Stevens, W.J., Krauss, M., Basch, H., and Jasien, P.G., Can. J. Chem., 1992, vol. 70, p. 612.

    Article  CAS  Google Scholar 

  20. Laikov, D.N., Chem. Phys. Lett., 1997, vol. 281, p. 151.

    Article  CAS  Google Scholar 

  21. Laikov, D.N. and Ustynyuk, Yu.A., Izv. Akad. Nauk, Ser. Khim., 2005, no. 3, p. 804.

    Google Scholar 

  22. Mulliken, R.S., J. Chem. Phys., 1955, vol. 23, p. 1833, 1841, 2338, 2343.

    Article  CAS  Google Scholar 

  23. Hirshfeld, F., Theor. Chim. Acta, 1977, vol. 44, p. 129.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Zavelev.

Additional information

Original Russian Text © D.E. Zavelev, G.M. Zhidomirov, M.V. Tsodikov, 2018, published in Kinetika i Kataliz, 2018, Vol. 59, No. 4, pp. 404–416.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zavelev, D.E., Zhidomirov, G.M. & Tsodikov, M.V. Theoretical Study of Interaction between Hydrogen and Small Pt–Sn Intermetallic Clusters. Kinet Catal 59, 405–417 (2018). https://doi.org/10.1134/S002315841804016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002315841804016X

Keywords

Navigation