Skip to main content
Log in

Inhibition of amyloid aggregation of bovine serum albumin by sodium dodecyl sulfate at submicellar concentrations

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Sodium dodecyl sulfate (SDS), as an anionic surfactant, can induce protein conformational changes. Recent investigations demonstrated different effects of SDS on protein amyloid aggregation. In the present study, the effect of SDS on amyloid aggregation of bovine serum albumin (BSA) was evaluated. BSA transformed to β-sheet-rich amyloid aggregates upon incubation at pH 7.4 and 65°C, as demonstrated by thioflavin T fluorescence, circular dichroism, and transmission electron microscopy. SDS at submicellar concentrations inhibited BSA amyloid aggregation with IC50 of 47.5 μM. The inhibitory effects of structural analogs of SDS on amyloid aggregation of BSA were determined to explore the structure–activity relationship, with results suggesting that both anionic and alkyl moieties of SDS were critical, and that an alkyl moiety with chain length ≥10 carbon atoms was essential to amyloid inhibition. We attributed the inhibitory effect of SDS on BSA amyloid aggregation to interactions between the detergent molecule and the fatty acid binding sites on BSA. The bound SDS stabilized BSA, thereby inhibiting protein transformation to amyloid aggregates. This study reports for the first time that the inhibitory effect of SDS on albumin fibrillation is closely related to its alkyl structure. Moreover, the specific binding of SDS to albumin is the main driving force in amyloid inhibition. This study not only provides fresh insight into the role of SDS in amyloid aggregation of serum albumin, but also suggests rational design of novel antiamyloidogenic reagents based on specific-binding ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

CD:

circular dichroism

HSA:

human serum albumin

SDS:

sodium dodecyl sulfate

TEM:

transmission electron microscopy

ThT:

thioflavin T

References

  1. Dobson, C. M. (2003) Protein folding and misfolding, Nature, 426, 884–890.

    Article  CAS  PubMed  Google Scholar 

  2. Nizhnikov, A. A., Antonets K. S., and Inge-Vechtomov, S. G. (2015) Amyloids: from pathogenesis to function, Biochemistry (Moscow), 80, 1127–1144.

    Article  CAS  Google Scholar 

  3. Stefani, M. (2004) Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world, Biochim. Biophys. Acta, 1739, 5–25.

    Article  CAS  PubMed  Google Scholar 

  4. Dobson, C. M. (1999) Protein misfolding, evolution and disease, Trends Biochem. Sci., 24, 329–332.

    Article  CAS  PubMed  Google Scholar 

  5. Gazit, E. (2002) The correctly folded state of proteins: is it a metastable state? Angew. Chem. Int. Ed., 41, 257–259.

    Article  CAS  Google Scholar 

  6. Shewmaker, F., McGlinchey, R. P., and Wickner, R. B. (2011) Structural insights into functional and pathological amyloid, J. Biol. Chem., 286, 16533–16540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Martino, P. D. (2016) Bap: a new type of functional amyloid, Trends Microbiol., 24, 682–684.

    Article  PubMed  Google Scholar 

  8. Huang, B., He, J., Ren, J., Yan, X. Y., and Zeng, C. M. (2009) Cellular membrane disruption by amyloid fibrils involved intermolecular disulfide cross-linking, Biochemistry, 48, 5794–5800.

    Article  CAS  PubMed  Google Scholar 

  9. Fandrich, M. (2007) Absolute correlation between lag time and growth rate in the spontaneous formation of several amyloid-like aggregates and fibrils, J. Mol. Biol., 365, 1266–1270.

    Article  PubMed  Google Scholar 

  10. Juarez, J., Taboada, P., and Mosquera, V. (2009) Existence of different structural intermediates on the fibrillation pathway of human serum albumin, Biophys. J., 96, 2353–2370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holm, N. K., Jespersen, S. K., Thomassen, L. V., Wolff, T. Y., Sehgal, P., Thomsen, L. A., Christiansen, G., Andersen, C. B., Knudsen, A. D., and Otzen, D. E. (2007) Aggregation and fibrillation of bovine serum albumin, Biochim. Biophys. Acta, 1774, 1128–1138.

    Article  CAS  PubMed  Google Scholar 

  12. Chiti, F., Webster, P., Taddei, N., Clark, A., Stefani, M., Ramponi, G., and Dobson, C. M. (1999) Designing conditions for in vitro formation of amyloid protofilaments and fibrils, Proc. Natl. Acad. Sci. USA, 96, 3590–3594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sasahara, K., Yagi, H., Sakai, M., Naiki, H., and Goto, Y. (2008) Amyloid nucleation triggered by agitation of β2-microglobulin under acidic and neutral pH conditions, Biochemistry, 47, 2650–2660.

    Article  CAS  PubMed  Google Scholar 

  14. Hurshman, A. R., White, J. T., Powers, E. T., and Kelly, J. W. (2004) Transthyretin aggregation under partially denaturing conditions is a downhill polymerization, Biochemistry, 43, 7365–7381.

    Article  CAS  PubMed  Google Scholar 

  15. Ahmad, A., Uversky, V. N., Hong, D., and Fink, A. L. (2005) Early events in the fibrillation of monomeric insulin, J. Biol. Chem., 280, 42669–42675.

    Article  CAS  PubMed  Google Scholar 

  16. Doig, A. J., and Derreumaux, P. (2015) Inhibition of protein aggregation and amyloid formation by small molecules, Curr. Opin. Struct. Biol., 30, 50–56.

    Article  CAS  PubMed  Google Scholar 

  17. Peters, T., Jr. (1985) Serum albumin, Adv. Protein Chem., 37, 161–245.

    Article  CAS  PubMed  Google Scholar 

  18. Olson, R. E., and Christ, D. D. (1996) Plasma protein binding of drugs, Annu. Rep. Med. Chem., 31, 327–336.

    Article  CAS  Google Scholar 

  19. Simard, J. R., Zunszain, P. A., Ha, C. E., Yang, J. S., Bhagavan, N. V., Petitpas, I., Curry, S., and Hamilton, J. A. (2005) Locating high-affinity fatty acid-binding sites on albumin by X-ray crystallography and NMR spectroscopy, Proc. Natl. Acad. Sci. USA, 102, 17958–17963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vetri, V., D’Amico M., Fodera, V., Leone, M., Ponzoni, A., Sberveglieri, G., and Militello, V. (2011) Bovine serum albumin protofibril-like aggregates formation: solo but not simple mechanism, Arch. Biochem. Biophys., 508, 13–24.

    Article  CAS  PubMed  Google Scholar 

  21. Veerman, C., Sagis, L. M. C., Heck, J., and Van der Linden, E. (2003) Mesostructure of fibrillar bovine serum albumin gels, Int. J. Biol. Macromol., 31, 139–146.

    Article  CAS  PubMed  Google Scholar 

  22. Bhattacharya, M., Jain, N., and Mukhopadhyay, S. (2011) Insights into the mechanism of aggregation and fibril formation from bovine serum albumin, J. Phys. Chem. B, 115, 4195–4205.

    Article  CAS  PubMed  Google Scholar 

  23. Taboada, P., Barbosa, S., Castro, E., and Mosquera, V. (2006) Amyloid fibril formation and other aggregate species formed by human serum albumin association, J. Phys. Chem. B, 110, 20733–20736.

    Article  CAS  PubMed  Google Scholar 

  24. Rizo, J., Blanco, F. J., Kobe, B., Bruch, M. D., and Gierasch, L. M. (1993) Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments, Biochemistry, 32, 4881–4894.

    Article  CAS  PubMed  Google Scholar 

  25. Waterhous, D. V. (1994) Importance of environment in determining secondary structure in proteins, Biochemistry, 33, 2121–2128.

    Article  CAS  PubMed  Google Scholar 

  26. Giehm, L., Oliveira, C. L. P., Christiansen, G., Pedersen, J. S., and Otzen, D. E. (2010) SDS-induced fibrillation of α-synuclein: an alternative fibrillation pathway, J. Mol. Biol., 401, 115–133.

    Article  CAS  PubMed  Google Scholar 

  27. Rangachari, V., Reed, D. K., Moore, B. D., and Rosenberry, T. L. (2006) Secondary structure and interfacial aggregation of amyloid-β(1-40) on sodium dodecyl sulfate micelles, Biochemistry, 45, 8639–8648.

    Article  CAS  PubMed  Google Scholar 

  28. Pertinhez, T. A., Bouchard, M., Smith, R. A. G., Dobson, C. M., and Smith, L. J. (2002) Stimulation and inhibition of fibril formation by a peptide in the presence of different concentrations of SDS, FEBS Lett., 529, 193–197.

    Article  CAS  PubMed  Google Scholar 

  29. Movaghati, S., Moosavi-Movahedi, A. A., Khodagholi, F., Digaleh, H., Kachooei, E., and Sheibani, N. (2014) Sodium dodecyl sulphate modulates the fibrillation of human serum albumin in a dose-dependent manner and impacts the PC12 cells retraction, Colloids Surf. B Biointerfaces, 122, 341–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ahmad, M. F., Ramakrishna, T., Raman, B., and Rao, C. M. (2006) Fibrillogenic and non-fibrillogenic ensembles of SDS-bound human alpha-synuclein, J. Mol. Biol., 364, 1061–1072.

    Article  CAS  PubMed  Google Scholar 

  31. Gelamo, E. L., Silva, C. H. T. P., Imasato, H., and Tabak, M. (2002) Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modeling, Biochim. Biophys. Acta, 1594, 84–99.

    Article  CAS  PubMed  Google Scholar 

  32. Van der Vusse, G. J. (2009) Albumin as fatty acid transporter, Drug Metab. Pharmacokinet., 24, 300–307.

    Article  PubMed  Google Scholar 

  33. An, T. T., Feng, S., and Zeng, C. M. (2017) Oxidized epigallocatechin gallate inhibited lysozyme fibrillation more strongly than the native form, Redox Biol., 11, 315–321.

    Article  CAS  PubMed  Google Scholar 

  34. Fandrich, M., Fletcher M. A., and Dobson, C. M. (2001) Amyloid fibrils from muscle myoglobin, Nature, 410, 165–166.

    Article  CAS  PubMed  Google Scholar 

  35. Charbonneau, D. M., and Tajmir-Riahi, H. A. (2010) Study on the interaction of cationic lipids with bovine serum albumin, J. Phys. Chem. B, 114, 1148–1155.

    Article  CAS  PubMed  Google Scholar 

  36. Serio, T. R., Cashikar, A. G., Kowal, A. S., Sawicki, G. J., Moslehi, J. J., Serpell, L., Arnsdorf, M. F., and Lindquist, S. L. (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant, Science, 289, 1317–1321.

    Article  CAS  PubMed  Google Scholar 

  37. Esler, W. P., Stimson, E. R., Jennings, J. M., Vinters, H. V., Ghilardi, J. R., Lee, J. P., Mantyh, P. W., and Maggio, J. E. (2000) Alzheimer’s disease amyloid propagation by a template-dependent dock-lock mechanism, Biochemistry, 39, 6288–6295.

    Article  CAS  PubMed  Google Scholar 

  38. Nguyen, P. H., Li, M. S., Stock, G., Straub, J. E., and Thirumalai, D. (2007) Monomer adds to preformed structured oligomers of Aβ-peptides by a two-stage dock-lock mechanism, Proc. Natl. Acad. Sci. USA, 104, 111–116.

    Article  CAS  PubMed  Google Scholar 

  39. Grigorashvili, E. I., Selivanova, O. M., Dovidchenko, N. V., Dzhus, U. F., Mikhailina, A. O., Suvorina, M. Y., Marchenkov, V. V., Surin, A. K., and Galzitskaya, O. V. (2016) Determination of size of folding nuclei of fibrils formed from recombinant Aβ(1-40) peptide, Biochemistry (Moscow), 81, 538–547.

    Article  CAS  Google Scholar 

  40. Selivanova, O. M., Glyakina, A. V., Gorbunova, E. Y., Mustaeva, L. G., Suvorina, M. Y., Grigorashvili, E. I., Nikulin, A. D., Dovidchenko, N. V., Rekstina, V. V., Kalebina, T. S., Surin, A. K., and Galzitskaya, O. V. (2016) Structural model of amyloid fibrils for amyloidogenic peptide from Bgl2p glucantransferase of S. cerevisiae cell wall and its modifying analog. New morphology of amyloid fibrils, Biochim. Biophys. Acta, 1864, 1489–1499.

    Article  CAS  PubMed  Google Scholar 

  41. Selivanova, O. M., Suvorina, M. Y., Surin, A. K., Dovidchenko, N. V., and Galzitskaya, O. V. (2017) Insulin and Lispro insulin: what is common and different in their behavior? Curr. Protein Pept. Sci., 18, 57–64.

    Article  CAS  PubMed  Google Scholar 

  42. Hoover, C. E., Davenport, K. A., Henderson, D. M., Zabel, M. D., and Hoover, E. A. (2017) Endogenous brain lipids inhibit prion amyloid formation in vitro, J. Virol., 91, e02162–02166.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Khan, J. M., Qadeer, A., Chaturvedi, S. K., Ahmad, E., Rehman, S. A. A., Gourinath, S., and Khan, R. H. (2012) SDS can be utilized as an amyloid inducer: a case study on diverse proteins, PLoS One, 7, e29694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khan, J. M., Abdulrehman, S. A., Zaidi, F. K., Gourinath, S., and Khan, R. H. (2014) Hydrophobicity alone cannot trigger aggregation in protonated mammalian serum albumins, Phys. Chem. Chem. Phys., 16, 5150–5161.

    Article  CAS  PubMed  Google Scholar 

  45. Rafikova, E. R., Panyukov, Y. V., Arutyunyan, A. M., Yaguzhinsky, L. S., Drachev, V. A., and Dobrov, E. N. (2004) Low sodium dodecyl sulfate concentrations inhibit tobacco mosaic virus coat protein amorphous aggregation and change the protein stability, Biochemistry (Moscow), 69, 1372–1378.

    Article  CAS  Google Scholar 

  46. Santos, S. F., Zanette, D., Fischer, H., and Itri, R. (2003) A systematic study of bovine serum albumin (BSA) and sodium dodecyl sulfate (SDS) interactions by surface ten-sion and small angle X-ray scattering, J. Colloid Interf. Sci., 262, 400–408.

    Article  CAS  Google Scholar 

  47. Bujacz, A. (2012) Structures of bovine, equine and leporine serum albumin, Acta Crystallogr. D, 68, 1278–1289.

    Article  CAS  PubMed  Google Scholar 

  48. Hamilton, J. A., Era, S., Bhamidipati, S. P., and Reed, R. G. (1991) Locations of the three primary binding sites for long-chain fatty acids on bovine serum albumin, Proc. Natl. Acad. Sci. USA, 88, 2051–2054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. De Sousa Neto, D., Salmon, C. E., Alonso, A., and Tabak, M. (2009) Interaction of bovine serum albumin (BSA) with ionic surfactants evaluated by electron paramagnetic reso-nance (EPR) spectroscopy, Colloids Surf. B Biointerfaces, 70, 147–156.

    Article  PubMed  Google Scholar 

  50. Bhattacharya, A. A., Grune T., and Curry, S. (2000) Crystallographic analysis reveals common modes of bind-ing of medium and long-chain fatty acids to human serum albumin, J. Mol. Biol., 303, 721–732.

    Article  CAS  PubMed  Google Scholar 

  51. Curry, S., Mandelkow, H., Brick, P., and Franks, N. (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites, Nat. Struct. Biol., 5, 827–835.

    Article  CAS  PubMed  Google Scholar 

  52. Curry, S., Brick, P., and Franks, N. P. (1999) Fatty acid binding to human serum albumin: new insights from crystallographic studies, Biochim. Biophys. Acta, 1441, 131–140.

    Article  CAS  PubMed  Google Scholar 

  53. Ahmad, N., and Qasim, M. A. (1995) Fatty acid binding to bovine serum albumin prevents formation of intermediate during denaturation, Eur. J. Biochem., 227, 563–565.

    Article  CAS  PubMed  Google Scholar 

  54. Takeda, K., and Moriyama, Y. (2015) Kinetic aspects of surfactant-induced structural changes of proteins–unsolved problems of two-state model for protein denatura-tion, J. Oleo Sci., 64, 1143–1158.

    Article  CAS  PubMed  Google Scholar 

  55. Matei, I., Ariciu, A. M., Neacsu, M. V., Collauto, A., Salifoglou, A., and Ionita, G. (2014) Cationic spin probe reporting on thermal denaturation and complexation–decomplexation of BSA with SDS. Potential applications in protein purification processes, J. Phys. Chem. B, 118, 11238–11252.

    Article  CAS  PubMed  Google Scholar 

  56. Ashbrook, J. D., Spector, A. A., and Fletche, J. E. (1972) Medium chain fatty acid binding to human plasma albu-min, J. Biol. Chem., 247, 7038–7042.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Ming Zeng.

Additional information

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM17-395, November 6, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, XJ., Zhang, YJ. & Zeng, CM. Inhibition of amyloid aggregation of bovine serum albumin by sodium dodecyl sulfate at submicellar concentrations. Biochemistry Moscow 83, 60–68 (2018). https://doi.org/10.1134/S000629791801008X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791801008X

Keywords

Navigation