Skip to main content
Log in

Prions and chaperones: Friends or foes?

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review highlights the modern perception of anomalous folding of the prion protein and the role of chaperones therein. Special attention is paid to prion proteins from mammalian species, which are prone to amyloid-like prion diseases due to a unique aggregation pathway. Despite being a significantly popular current subject of investigations, the etiology, structure, and function of both normal and anomalous prion proteins still hold many mysteries. The most interesting of those are connected to the interaction with chaperone system, which is responsible for stabilizing protein structure and disrupting aggregates. In the case of prion proteins the following question is of the most importance — can chaperones influence different stages of the formation of pathological aggregates (these vary from intermediate oligomers to mature amyloid-like fibrils) and the whole transition from native prion protein to its amyloid-like fibril-enriched form? The existing inconsistencies and ambiguities in the observations made so far can be attributed to the fact that most of the investigations did not take into account the type and functional state of the chaperones. This review discusses in detail our previous works that have demonstrated fundamental differences between eukaryotic and prokaryotic chaperones in the action exerted on the amyloid-like transformation of the prion protein along with the dependence of the observed effects on the functional state of the chaperone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Prusiner, S. B. (1982) Novel proteinaceous infectious particles cause scrapie, Science, 216, 136–144.

    Article  CAS  PubMed  Google Scholar 

  2. Prusiner, S. B., Groth, D. F., Bolton, D. C., Kent, S. B., and Hood, L. E. (1984) Purification and structural studies of a major scrapie prion protein, Cell, 38, 127–134.

    Article  CAS  PubMed  Google Scholar 

  3. Chesebro, B., Race, R., Wehrly, K., Nishio, J., Bloom, M., Lechner, D., Bergstrom, S., Robbins, K., Mayer, L., Keith, J. M., Garon, C., and Haase, A. (1985) Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain, Nature, 315, 331–333.

    Article  CAS  PubMed  Google Scholar 

  4. Oesch, B., Westaway, D., Walchli, M., McKinley, M. P., Kent, S. B., Aebersold, R., Barry, R. A., Tempst, P., Teplow, D. B., Hood, L. E., Prusiner, S. B., and Weissmann, C. (1985) A cellular gene encodes scrapie PrP 27–30 protein, Cell, 40, 735–746.

    Article  CAS  PubMed  Google Scholar 

  5. Basler, K., Oesch, B., Scott, M., Westaway, D., Walchli, M., Groth, D. F., McKinley, M. P., Prusiner, S. B., and Weissmann, C. (1986) Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene, Cell, 46, 417–428.

    Article  CAS  PubMed  Google Scholar 

  6. Bueler, H., Aguzzi, A., Sailer, A., Greiner, R. A., Autenried, P., Aguet, M., and Weissmann, C. (1993) Mice devoid of PrP are resistant to scrapie, Cell, 73, 1339–1347.

    Article  CAS  PubMed  Google Scholar 

  7. Kushnirov, V. V., and Ter-Avanesyan, M. D. (1998) Structure and replication of yeast prions, Cell, 94, 13–16.

    Article  CAS  PubMed  Google Scholar 

  8. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D. (1997) In vitro propagation of the prionlike state of yeast Sup35 protein, Science, 277, 381–383.

    Article  CAS  PubMed  Google Scholar 

  9. Kushnirov, V. V., Ter-Avanesyan, M. D., Telckov, M. V., Surguchov, A. P., Smirnov, V. N., and Inge-Vechtomov, S. G. (1988) Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae, Gene, 66, 45–54.

    Article  CAS  PubMed  Google Scholar 

  10. Harris, D. A. (2001) in Advances in Protein Chemistry (Byron, C., ed.) Vol. 57, Academic Press, pp. 203–228.

  11. Huang, Z., Prusiner, S. B., and Cohen, F. E. (1995) Scrapie prions: a three-dimensional model of an infectious fragment, Fold. Des., 1, 13–19.

    Article  PubMed  Google Scholar 

  12. Lysek, D. A., Schorn, C., Nivon, L. G., Esteve-Moya, V., Christen, B., Calzolai, L., von Schroetter, C., Fiorito, F., Herrmann, T., Guntert, P., and Wuthrich, K. (2005) Prion protein NMR structures of cats, dogs, pigs, and sheep, Proc. Natl. Acad. Sci. USA, 102, 640–645.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Knaus, K. J., Morillas, M., Swietnicki, W., Malone, M., Surewicz, W. K., and Yee, V. C. (2001) Crystal structure of the human prion protein reveals a mechanism for oligomerization, Nat. Struct. Biol., 8, 770–774.

    Article  CAS  PubMed  Google Scholar 

  14. Sawaya, M. R., Sambashivan, S., Nelson, R., Ivanova, M. I., Sievers, S. A., Apostol, M. I., Thompson, M. J., Balbirnie, M., Wiltzius, J. J., McFarlane, H. T., Madsen, A. O., Riekel, C., and Eisenberg, D. (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers, Nature, 47, 453–457.

    Article  Google Scholar 

  15. Haire, L. F., Whyte, S. M., Vasisht, N., Gill, A. C., Verma, C., Dodson, E. J., Dodson, G. G., and Bayley, P. M. (2004) The crystal structure of the globular domain of sheep prion protein, J. Mol. Biol., 336, 1175–1183.

    Article  CAS  PubMed  Google Scholar 

  16. Riek, R., Hornemann, S., Wider, G., Glockshuber, R., and Wuthrich, K. (1997) NMR characterization of the full-length recombinant murine prion protein, mPrP(23–231), FEBS Lett., 413, 282–288.

    Article  CAS  PubMed  Google Scholar 

  17. Brockes, J. P. (1999) Topics in prion cell biology, Curr. Opin. Neurobiol., 9, 571–577.

    Article  CAS  PubMed  Google Scholar 

  18. Aguzzi, A., Sigurdson, C., and Heikenwaelder, M. (2008) Molecular mechanisms of prion pathogenesis, Annu. Rev. Pathol., 3, 11–40.

    Article  CAS  PubMed  Google Scholar 

  19. Bujdoso, R., Burke, D. F., and Thackray, A. M. (2005) Structural differences between allelic variants of the ovine prion protein revealed by molecular dynamics simulations, Proteins, 61, 840–849.

    Article  CAS  PubMed  Google Scholar 

  20. Gossert, A. D., Bonjour, S., Lysek, D. A., Fiorito, F., and Wuthrich, K. (2005) Prion protein NMR structures of elk and of mouse/elk hybrids, Proc. Natl. Acad. Sci. USA, 102, 646–650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Huang, Z., Gabriel, J. M., Baldwin, M. A., Fletterick, R. J., Prusiner, S. B., and Cohen, F. E. (1994) Proposed three-dimensional structure for the cellular prion protein, Proc. Natl. Acad. Sci. USA, 91, 7139–7143.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Prusiner, S. B. (1994) Neurodegeneration in humans caused by prions, West. J. Med., 161, 264–272.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Prusiner, S. B., Scott, M. R., DeArmond, S. J., and Cohen, F. E. (1998) Prion protein biology, Cell, 93, 337–348.

    Article  CAS  PubMed  Google Scholar 

  24. Kaneko, K., Ball, H. L., Wille, H., Zhang, H., Groth, D., Torchia, M., Tremblay, P., Safar, J., Prusiner, S. B., DeArmond, S. J., Baldwin, M. A., and Cohen, F. E. (2000) A synthetic peptide initiates Gerstmann-Straussler-Scheinker (GSS) disease in transgenic mice, J. Mol. Biol., 295, 997–1007.

    Article  CAS  PubMed  Google Scholar 

  25. Kitamoto, T., Iizuka, R., and Tateishi, J. (1993) An amber mutation of prion protein in Gerstmann-Straussler syndrome with mutant PrP plaques, Biochem. Biophys. Res. Commun., 192, 525–531.

    Article  CAS  PubMed  Google Scholar 

  26. Supattapone, S., Bosque, P., Muramoto, T., Wille, H., Aagaard, C., Peretz, D., Nguyen, H. O., Heinrich, C., Torchia, M., Safar, J., Cohen, F. E., DeArmond, S. J., Prusiner, S. B., and Scott, M. (1999) Prion protein of 106 residues creates an artificial transmission barrier for prion replication in transgenic mice, Cell, 96, 869–878.

    Article  CAS  PubMed  Google Scholar 

  27. Ghetti, B., Piccardo, P., Spillantini, M. G., Ichimiya, Y., Porro, M., Perini, F., Kitamoto, T., Tateishi, J., Seiler, C., Frangione, B., Bugiani, O., Giaccone, G., Prelli, F., Goedert, M., Dlouhy, S. R., and Tagliavini, F. (1996) Vascular variant of prion protein cerebral amyloidosis with τ-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP, Proc. Natl. Acad. Sci. USA, 93, 744–748.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Govaerts, C., Wille, H., Prusiner, S. B., and Cohen, F. E. (2004) Evidence for assembly of prions with left-handed β-helices into trimers, Proc. Natl. Acad. Sci. USA, 101, 8342–8347.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Der-Sarkissian, A., Jao, C. C., Chen, J., and Langen, R. (2003) Structural organization of α-synuclein fibrils studied by site-directed spin labeling, J. Biol. Chem., 278, 37530–37535.

    Article  CAS  PubMed  Google Scholar 

  30. Petkova, A. T., Ishii, Y., Balbach, J. J., Antzutkin, O. N., Leapman, R. D., Delaglio, F., and Tycko, R. (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR, Proc. Natl. Acad. Sci. USA, 99, 16742–16747.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sunde, M., Serpell, L. C., Bartlam, M., Fraser, P. E., Pepys, M. B., and Blake, C. C. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction, J. Mol. Biol., 273, 729–739.

    Article  CAS  PubMed  Google Scholar 

  32. Luhrs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Dobeli, H., Schubert, D., and Riek, R. (2005) 3D structure of Alzheimer’s amyloid-β (1–42) fibrils, Proc. Natl. Acad. Sci. USA, 102, 17342–17347.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wasmer, C., Lange, A., Van Melckebeke, H., Siemer, A. B., Riek, R., and Meier, B. H. (2008) Amyloid fibrils of the HET-s (218–289) prion form a β-solenoid with a triangular hydrophobic core, Science, 319, 1523–1526.

    Article  CAS  PubMed  Google Scholar 

  34. Gajdusek, D. C. (1988) Transmissible and non-transmissible amyloidoses: autocatalytic posttranslational conversion of host precursor proteins to β-pleated sheet configurations, J. Neuroimmunol., 20, 95–110.

    Article  CAS  PubMed  Google Scholar 

  35. Come, J. H., Fraser, P. E., and Lansbury, P. T., Jr. (1993) A kinetic model for amyloid formation in the prion diseases: importance of seeding, Proc. Natl. Acad. Sci. USA, 90, 5959–5963.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Kelly, J. W. (2000) Mechanisms of amyloidogenesis, Nat. Struct. Biol., 7, 824–826.

    Article  CAS  PubMed  Google Scholar 

  37. Eghiaian, F., Daubenfeld, T., Quenet, Y., van Audenhaege, M., Bouin, A. P., van der Rest, G., Grosclaude, J., and Rezaei, H. (2007) Diversity in prion protein oligomerization pathways results from domain expansion as revealed by hydrogen/deuterium exchange and disulfide linkage, Proc. Natl. Acad. Sci. USA, 104, 7414–7419.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Rezaei, H., Eghiaian, F., Perez, J., Doublet, B., Choiset, Y., Haertle, T., and Grosclaude, J. (2005) Sequential generation of two structurally distinct ovine prion protein soluble oligomers displaying different biochemical reactivities, J. Mol. Biol., 347, 665–679.

    Article  CAS  PubMed  Google Scholar 

  39. Singh, J., Sabareesan, A. T., Mathew, M. K., and Udgaonkar, J. B. (2012) Development of the structural core and of conformational heterogeneity during the conversion of oligomers of the mouse prion protein to worm-like amyloid fibrils, J. Mol. Biol., 423, 217–231.

    Article  CAS  PubMed  Google Scholar 

  40. Aguzzi, A., and Polymenidou, M. (2004) Mammalian prion biology: one century of evolving concepts, Cell, 116, 313–327.

    Article  CAS  PubMed  Google Scholar 

  41. Vassallo, N., and Herms, J. (2003) Cellular prion protein function in copper homeostasis and redox signaling at the synapse, J. Neurochem., 86, 538–544.

    Article  CAS  PubMed  Google Scholar 

  42. Tsiroulnikov, K., Rezaei, H., Dalgalarrondo, M., Chobert, J. M., Grosclaude, J., and Haertle, T. (2006) Cu(II) induces small-size aggregates with amyloid characteristics in two alleles of recombinant ovine prion proteins, Biochim. Biophys. Acta, 1764, 1218–1226.

    Article  CAS  PubMed  Google Scholar 

  43. Wong, E., Thackray, A. M., and Bujdoso, R. (2004) Copper induces increased β-sheet content in the scrapie-susceptible ovine prion protein PrPVRQ compared with the resistant allelic variant PrPARR, Biochem. J., 380, 273–282.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Roucou, X., Gains, M., and LeBlanc, A. C. (2004) Neuroprotective functions of prion protein, J. Neurosci. Res., 75, 153–161.

    Article  CAS  PubMed  Google Scholar 

  45. Kawahara, M., Kuroda, Y., Arispe, N., and Rojas, E. (2000) Alzheimer’s β-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line, J. Biol. Chem., 275, 14077–14083.

    Article  CAS  PubMed  Google Scholar 

  46. Moore, R. C., Lee, I. Y., Silverman, G. L., Harrison, P. M., Strome, R., Heinrich, C., Karunaratne, A., Pasternak, S. H., Chishti, M. A., Liang, Y., Mastrangelo, P., Wang, K., Smit, A. F., Katamine, S., Carlson, G. A., Cohen, F. E., Prusiner, S. B., Melton, D. W., Tremblay, P., Hood, L. E., and Westaway, D. (1999) Ataxia in prion protein (PrP)-deficient mice is associated with upregulation of the novel PrP-like protein doppel, J. Mol. Biol., 292, 797–817.

    Article  CAS  PubMed  Google Scholar 

  47. Collinge, J., Whittington, M. A., Sidle, K. C., Smith, C. J., Palmer, M. S., Clarke, A. R., and Jefferys, J. G. (1994) Prion protein is necessary for normal synaptic function, Nature, 370, 295–297.

    Article  CAS  PubMed  Google Scholar 

  48. Jeffrey, M., Goodsir, C., McGovern, G., Barmada, S. J., Medrano, A. Z., and Harris, D. A. (2009) Prion protein with an insertional mutation accumulates on axonal and dendritic plasmalemma and is associated with distinctive ultrastructural changes, Am. J. Pathol., 175, 1208–1217.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Stys, P. K., You, H., and Zamponi, G. W. (2012) Copper-dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders, J. Physiol., 590, 1357–1368.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Maglio, L. E., Martins, V. R., Izquierdo, I., and Ramirez, O. A. (2006) Role of cellular prion protein on LTP expression in aged mice, Brain Res., 1097, 11–18.

    Article  CAS  PubMed  Google Scholar 

  51. Khosravani, H., Zhang, Y., Tsutsui, S., Hameed, S., Altier, C., Hamid, J., Chen, L., Villemaire, M., Ali, Z., Jirik, F. R., and Zamponi, G. W. (2008) Prion protein attenuates excitotoxicity by inhibiting NMDA receptors, J. Gen. Physiol., 131, i5.

    Article  PubMed  Google Scholar 

  52. Gimbel, D. A., Nygaard, H. B., Coffey, E. E., Gunther, E. C., Lauren, J., Gimbel, Z. A., and Strittmatter, S. M. (2010) Memory impairment in transgenic Alzheimer mice requires cellular prion protein, J. Neurosci., 30, 6367–6374.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Gunther, E. C., and Strittmatter, S. M. (2010) β-Amyloid oligomers and cellular prion protein in Alzheimer’s disease, J. Mol. Med. (Berl.), 88, 331–338.

    Article  CAS  Google Scholar 

  54. Lauren, J., Gimbel, D. A., Nygaard, H. B., Gilbert, J. W., and Strittmatter, S. M. (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers, Nature, 457, 1128–1132.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Um, J. W., and Strittmatter, S. M. (2013) Amyloid-β induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease, Prion, 7, 37–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Bukau, B., and Horwich, A. L. (1998) The Hsp70 and Hsp60 chaperone machines, Cell, 92, 351–366.

    Article  CAS  PubMed  Google Scholar 

  57. Carrell, R. W., and Lomas, D. A. (1997) Conformational disease, Lancet, 350, 134–138.

    Article  CAS  PubMed  Google Scholar 

  58. Polyakova, O. V., Roitel, O., Asryants, R. A., Poliakov, A. A., Branlant, G., and Muronetz, V. I. (2005) Misfolded forms of glyceraldehyde-3-phosphate dehydrogenase interact with GroEL and inhibit chaperonin-assisted folding of the wild-type enzyme, Protein Sci., 14, 921–928.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Welch, W. J., and Gambetti, P. (1998) Chaperoning brain diseases, Nature, 392, 23–24.

    Article  CAS  PubMed  Google Scholar 

  60. Dulle, J. E., Bouttenot, R. E., Underwood, L. A., and True, H. L. (2013) Soluble oligomers are sufficient for transmission of a yeast prion but do not confer phenotype, J. Cell. Biol, 203, 197–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Silveira, J. R., Raymond, G. J., Hughson, A. G., Race, R. E., Sim, V. L., Hayes, S. F., and Caughey, B. (2005) The most infectious prion protein particles, Nature, 437, 257–261.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Simoneau, S., Rezaei, H., Sales, N., Kaiser-Schulz, G., Lefebvre-Roque, M., Vidal, C., Fournier, J. G., Comte, J., Wopfner, F., Grosclaude, J., Schatzl, H., and Lasmezas, C. I. (2007) In vitro and in vivo neurotoxicity of prion protein oligomers, PLoS Pathog., 3, e125.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Huang, P., Lian, F., Wen, Y., Guo, C., and Lin, D. (2013) Prion protein oligomer and its neurotoxicity, Acta Biochim. Biophys. Sin. (Shanghai), 45, 442–451.

    Article  CAS  Google Scholar 

  64. Novitskaya, V., Bocharova, O. V., Bronstein, I., and Baskakov, I. V. (2006) Amyloid fibrils of mammalian prion protein are highly toxic to cultured cells and primary neurons, J. Biol. Chem., 281, 13828–13836.

    Article  CAS  PubMed  Google Scholar 

  65. Bailey, C. K., Andriola, I. F., Kampinga, H. H., and Merry, D. E. (2002) Molecular chaperones enhance the degradation of expanded polyglutamine repeat androgen receptor in a cellular model of spinal and bulbar muscular atrophy, Hum. Mol. Genet., 11, 515–523.

    Article  CAS  PubMed  Google Scholar 

  66. Hageman, J., Rujano, M. A., van Waarde, M. A., Kakkar, V., Dirks, R. P., Govorukhina, N., Oosterveld-Hut, H. M., Lubsen, N. H., and Kampinga, H. H. (2010) A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation, Mol. Cell, 37, 355–369.

    Article  CAS  PubMed  Google Scholar 

  67. Waudby, C. A., Knowles, T. P., Devlin, G. L., Skepper, J. N., Ecroyd, H., Carver, J. A., Welland, M. E., Christodoulou, J., Dobson, C. M., and Meehan, S. (2010) The interaction of αB-crystallin with mature α-synuclein amyloid fibrils inhibits their elongation, Biophys. J., 98, 843–851.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. DebBurman, S. K., Raymond, G. J., Caughey, B., and Lindquist, S. (1997) Chaperone-supervised conversion of prion protein to its protease-resistant form, Proc. Natl. Acad. Sci. USA, 94, 13938–13943.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Shorter, J., and Lindquist, S. (2004) Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers, Science, 304, 1793–1797.

    Article  CAS  PubMed  Google Scholar 

  70. Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D. (1996) Propagation of the yeast prionlike [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor, EMBO J., 15, 3127–3134.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Kryndushkin, D. S., Alexandrov, I. M., Ter-Avanesyan, M. D., and Kushnirov, V. V. (2003) Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104, J. Biol. Chem., 278, 49636–49643.

    Article  CAS  PubMed  Google Scholar 

  72. Naletova, I. N., Muronetz, V. I., and Schmalhausen, E. V. (2006) Unfolded, oxidized, and thermoinactivated forms of glyceraldehyde-3-phosphate dehydrogenase interact with the chaperonin GroEL in different ways, Biochim. Biophys. Acta, 1764, 831–838.

    Article  CAS  PubMed  Google Scholar 

  73. Stockel, J., and Hartl, F. U. (2001) Chaperonin-mediated de novo generation of prion protein aggregates, J. Mol. Biol., 313, 861–872.

    Article  CAS  PubMed  Google Scholar 

  74. Kiselev, G. G., Naletova, I. N., Sheval, E. V., Stroylova, Y. Y., Schmalhausen, E. V., Haertle, T., and Muronetz, V. I. (2011) Chaperonins induce an amyloid-like transformation of ovine prion protein: the fundamental difference in action between eukaryotic TRiC and bacterial GroEL, Biochim. Biophys. Acta, 1814, 1730–1738.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Muronetz.

Additional information

Published in Russian in Biokhimiya, 2014, Vol. 79, No. 8, pp. 957–973.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stroylova, Y.Y., Kiselev, G.G., Schmalhausen, E.V. et al. Prions and chaperones: Friends or foes?. Biochemistry Moscow 79, 761–775 (2014). https://doi.org/10.1134/S0006297914080045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297914080045

Key words

Navigation