Skip to main content
Log in

Induction of Arabidopsis gdh2 gene expression during changes in redox state of the mitochondrial respiratory chain

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Expression of the gdh2 gene encoding the α-subunit of mitochondrial glutamate dehydrogenase depends on redox state of the mitochondrial electron transport chain. Treatment of Arabidopsis thaliana cell suspension with antimycin A, a respiratory chain complex III inhibitor, resulted in an increase in gdh2 transcripts within 2 h. Inhibition of complex I by rotenone did not influence the transcript level, but treatment with potassium cyanide, a complex IV inhibitor, also increased the transcript content. Thus, gdh2 gene expression obviously responds to changes in the respiratory chain segment localized between complexes I and III. Lack of activation of gene expression after treatment of a cell suspension with hydrogen per- oxide and the prooxidant paraquat and results of experiments with antioxidants suggest that gdh2 gene expression is not associated with increased content of reactive oxygen species generated during inhibition of the electron transport chain. Protein phosphorylation by serine/threonine protein kinases is the essential step required for signal transduction into nucleus resulting in the induction of gdh2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AO:

alternative oxidases

DMSO:

dimethylsulf-oxide

ETC:

electron transport chain

FCCP:

carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone

ROS:

reactive oxygen species

References

  1. Purnell, M. P., and Botella, J. R. (2007) Plant Physiol., 143, 530–539.

    Article  PubMed  CAS  Google Scholar 

  2. Dubois, F., Terce-Laforgue, T., Gonzalez-Moro, M. B., Estavillo, J. M., Sangwan, R., Gallais, A., and Hirel, B. (2003) Plant Physiol. Biochem., 41, 565–576.

    Article  CAS  Google Scholar 

  3. Melo-Oliveira, R., Oliveira, I. C., and Coruzzi, G. M. (1996) Proc. Natl. Acad. Sci. USA, 93, 4718–4723.

    Article  PubMed  CAS  Google Scholar 

  4. Aubert, S. R., Bligny, R., Douce, R., Gout, E., Ratcliffe, R. G., and Roberts, J. K. (2001) J. Exp. Bot., 52, 37–45.

    Article  PubMed  CAS  Google Scholar 

  5. Skopelitis, D. S., Paranychianakis, N. V., Paschalidis, K. A., Pliakonis, E. D., Delis, I. D., Yakoumakis, D. I., Kouvarakis, A., Papadakis, A. K., Stephanou, E. G., and Roubelakis-Angelakis, K. A. (2006) Plant Cell, 18, 2767–2781.

    Article  PubMed  CAS  Google Scholar 

  6. Vanlerberghe, C. C., and Mclntosh, L. (1996) Plant Physiol., 111, 589–595.

    PubMed  CAS  Google Scholar 

  7. Lister, R., Chew, O., Lee, M., Heazlewood, J. L., Clifton, R., and Parker, K. L. (2004) Plant Physiol., 134, 777–789.

    Article  PubMed  CAS  Google Scholar 

  8. Clifton, R., Lister, R., Parker, K. L., Sappl, P. G., Elhafez, D., Millar, A. H., Day, D. A., and Whelan, J. (2005) Plant Mol. Biol., 58, 193–212.

    Article  PubMed  CAS  Google Scholar 

  9. Karpova, O. V., Kuzmin, E. V., Elthon, T. E., and Newton, K. J. (2002) Plant Cell, 14, 3271–3284.

    Article  PubMed  CAS  Google Scholar 

  10. Djajanegara, I., Finnegan, P. M., Mathieu, C., McCabe, T., Whelan, J., and Day, D. A. (2002) Plant Mol. Biol., 50, 735–742.

    Article  PubMed  CAS  Google Scholar 

  11. Vanlerberghe, G. C., Robson, C. A., and Yip, J. Y. (2002) Plant Physiol., 129, 1829–1842.

    Article  PubMed  CAS  Google Scholar 

  12. Murashige, T., and Skoog, F. (1962) Physiol. Plant., 15, 473–497.

    Article  CAS  Google Scholar 

  13. Vervoerd, T. C., Dekker, B. M., and Hoekema, A. (1989) Nucleic Acids Res., 17, 2362.

    Article  Google Scholar 

  14. Katyshev, A. I., Konstantinov, Yu. M., and Kobzev, V. F. (2006) Mol. Biol. (Moscow), 40, 327–329.

    Article  CAS  Google Scholar 

  15. Vanlerberghe, G. C., and McIntosh, L. (1994) Plant Physiol., 105, 867–874.

    Article  PubMed  CAS  Google Scholar 

  16. Moller, I. M. (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 561–591.

    Article  PubMed  CAS  Google Scholar 

  17. Maxwell, D. P., Nickels, R., and McIntosh, L. (2002) Plant J., 29, 269–279.

    Article  PubMed  CAS  Google Scholar 

  18. Bowler, C., van Montagu, M., and Inze, D. (1992) Annu. Rev. Plant. Physiol. Plant. Mol. Biol., 43, 83–116.

    Article  CAS  Google Scholar 

  19. Kuzmin, E. V., Karpova, O. V., Elthon, T. E., and Newton, K. J. (2004) J. Biol. Chem., 279, 20672–20677.

    Article  PubMed  CAS  Google Scholar 

  20. Rikhvanov, E. G., Gamburg, K. Z., Varakina, N. N., Rusaleva, T. M., Fedoseeva, I. V., Tauson, E. L., Stupnikova, I. V., Stepanov, A. V., Borovskii, G. B., and Voinikov, V. K. (2007) Plant J., 52, 763–778.

    Article  PubMed  CAS  Google Scholar 

  21. Dojcinovic, D., Krosting, J., Harris, A. J., Wagner, D. J., and Rhoads, D. M. (2005) Plant Mol. Biol., 58, 159–175.

    Article  PubMed  CAS  Google Scholar 

  22. Pfannschmidt, T., Nilsson, A., and Allen, J. F. (1999) Nature, 397, 625–628.

    Article  CAS  Google Scholar 

  23. Surpin, M., Larkin, R., and Chory, J. (2002) Plant Cell, 14, 327–338.

    Google Scholar 

  24. Dutilleul, C., Garmier, M., Noctor, G., Mathieu, C., Chetrit, P., Foyer, C. H., and de Paepe, R. (2003) Plant Cell, 15, 1212–1226.

    Article  PubMed  CAS  Google Scholar 

  25. Snyders, S., and Kohorn, B. D. (2001) J. Biol. Chem., 276, 32169–32176.

    Article  PubMed  CAS  Google Scholar 

  26. Bellafiore, S., Barneche, F., Peltier, G., and Rochaix, J. D. (2005) Nature, 433, 892–895.

    Article  PubMed  CAS  Google Scholar 

  27. Struglics, A., Fredlund, K. M., Konstantinov, Yu. M., Allen, J. F., and Moller, I. M. (2000) FEBS Lett., 475, 213–217.

    Article  PubMed  CAS  Google Scholar 

  28. Heazlewood, J. L., Tonti-Filippini, J. S., Gout, A., Day, D. A., Whelan, J., and Millar, A. H. (2004) Plant Cell, 16, 241–256.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Tarasenko.

Additional information

Original Russian Text © V. I. Tarasenko, E. Yu. Garnik, V. N. Shmakov, Yu. M. Konstantinov, 2009, published in Biokhimiya, 2009, Vol. 74, No. 1, pp. 62–69.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM08-110, November 9, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarasenko, V.I., Garnik, E.Y., Shmakov, V.N. et al. Induction of Arabidopsis gdh2 gene expression during changes in redox state of the mitochondrial respiratory chain. Biochemistry Moscow 74, 47–53 (2009). https://doi.org/10.1134/S0006297909010076

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297909010076

Key words

Navigation