Skip to main content
Log in

Transcriptomic Profiles of Three Peach (Prunus Persica (L.) Batsch) Cultivars with Different Ripening Periods at the Initial Fruiting Stages

  • NANOBIOLOGY AND GENETICS, OMICS TECHNOLOGIES
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The formation and maturation of stone fruits are complex processes that require the involvement of many genes and gene products. Early research on the peach fruit (Prunus persica (L.) Batsch) and the differences in ripening periods of its cultivars mainly focused on the already ripe fruit. However, in the early stages of fruit formation, there may be significant differences between cultivars that have different ripening periods. We identify and analyze differentially expressed genes (DEGs) between flowers, fertilized ovaries, and fruits at the S1 stage in cultivars that have different ripening periods, both between cultivars and from stage to stage. Gene expression in peach cultivars that have different ripening periods differs even in the early stages of fruit formation. The most significantly enriched categories of DEGs in this case are photosynthesis, redox reactions, and processes associated with cell-wall modification; thus, by the time the fruit forms, hormonal reception becomes more important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. H. F. Pan, Y. Sheng, Z. H. Gao, et al., Genet. Mol. Res. 15 (2016). https://doi.org/10.4238/gmr15049335

  2. X. Liu, M. Chen, B. Wen, et al., Sci. Hortic. (Amsterdam) 250, 271 (2019). https://doi.org/10.1016/j.scienta.2019.02.058

    Article  CAS  Google Scholar 

  3. M. Pei, C. Gu, and S. Zhang, Sci. Hortic. (Amsterdam) 246, 317 (2019). https://doi.org/10.1016/j.scienta.2018.10.065

    Article  CAS  Google Scholar 

  4. V. A. Lombardo, S. Osorio, J. Borsani, et al., Plant Physiol. 157, 1696–1710 (2011). https://doi.org/10.1104/pp.111.186064

    Article  CAS  Google Scholar 

  5. H. Elsadr, S. Sherif, T. Banks, et al., Sci. Rep. 9, 7522 (2019). https://doi.org/10.1038/s41598-019-44042-4

    Article  CAS  Google Scholar 

  6. G. Nuñez-Lillo, L. Ulloa-Zepeda, C. Pavez, et al., Plants 10, 2380 (2021). https://doi.org/10.3390/plants10112380

    Article  CAS  Google Scholar 

  7. P. Tonutti, C. Bonghi, B. Ruperti, et al., J. Am. Soc. Hortic. Sci. 122, 642 (1997). https://doi.org/10.21273/JASHS.122.5.642

    Article  CAS  Google Scholar 

  8. T. Livio, A. Tadiello, and G. Casadoro, Caryologia 60, 156 (2007). https://doi.org/10.1080/00087114.2007.10589565

    Article  Google Scholar 

  9. K. B. Ruiz, D. Bressanin, V. Ziosi, et al., Acta Hortic. 884, 101 (2010). https://doi.org/10.17660/ActaHortic.2010.884.10

  10. C. Gu, Y.-H. Zhou, W.-S. Shu, et al., Physiol. Plant. 164, 320 (2018). https://doi.org/10.1111/ppl.12736

    Article  CAS  Google Scholar 

  11. M. Martin, EMBnet.journal 17, 10 (2011). https://doi.org/10.14806/ej.17.1.200

  12. A. Dobin, Bioinformatics 29, 15 (2013). https://doi.org/10.1093/bioinformatics/bts635

    Article  CAS  Google Scholar 

  13. G. H. Putri, S. Anders, P. T. Pyl, et al., Bioinformatics 38, 2943 (2022). https://doi.org/10.1093/bioinformatics/btac166

    Article  CAS  Google Scholar 

  14. M. I. Love, W. Huber, and S. Anders, Genome Biol. 15, 550 (2014). https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  Google Scholar 

  15. X. Kou, L. Zhang, S. Yang, et al., Sci. Hortic. (Amsterdam) 225, 195 (2017). https://doi.org/10.1016/j.scienta.2017.07.004

    Article  CAS  Google Scholar 

  16. M. Ahmed and D. R. Kim, PeerJ. 6, e4473 (2018). https://doi.org/10.7717/peerj.4473

  17. S. Lurie, H.-W. Zhou, A. Lers, et al., Physiol. Plant. 119, 287 (2003). https://doi.org/10.1034/j.1399-3054.2003.00178.x

    Article  CAS  Google Scholar 

  18. N. Muramatsu, K. Tanaka, T. Asakura, and T. Haji, Engei Gakkai Zasshi 73, 534 (2004). https://doi.org/10.2503/jjshs.73.534

    Article  CAS  Google Scholar 

  19. S. Cardenas-Perez, J. J. Chanona-Pérez, N. Güemes-Vera, et al., Carbohydr. Polym. 196, 313 (2018). https://doi.org/10.1016/j.carbpol.2018.05.044

    Article  CAS  Google Scholar 

  20. H. E. Moline, C. E. LaMotte, C. Gochnauer, and A. McNamer, Plant. Physiol. 50 655 (1972). https://doi.org/10.1104/pp.50.6.655

    Article  CAS  Google Scholar 

  21. W. G. van Doorn and A. D. Stead, J. Exp. Bot. 48, 821 (1997). https://doi.org/10.1093/jxb/48.4.821

    Article  CAS  Google Scholar 

  22. C. Huan, L. Jiang, X An, et al., Plant. Physiol. Biochem. 104, 294–303 (2016). https://doi.org/10.1016/j.plaphy.2016.05.013

    Article  CAS  Google Scholar 

  23. V. Kumar, M. Irfan, S. Ghosh, et al., Protoplasma 253, 581 (2016).https://doi.org/10.1007/s00709-015-0836-z

  24. K. Mondal, S. P. Malhotra, V. Jain, and R. Singh, Physiol. Mol. Biol. Plants 15, 327 (2009). https://doi.org/10.1007/s12298-009-0037-3

  25. R. Huang, R. Xia, L. Hu, et al., Sci. Hortic. (Amsterdam) 113, 166 (2007). https://doi.org/10.1016/j.scienta.2007.03.010

    Article  CAS  Google Scholar 

  26. A. Jimenez, G. Creissen, B. Kular, et al., Planta 214, 751 (2002). https://doi.org/10.1007/s004250100667

    Article  CAS  Google Scholar 

  27. H. Hayama, T. Shimada, H. Fujii, et al., J. Exp. Bot. 57, 4071 (2006). https://doi.org/10.1093/jxb/erl178

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation, no. 075-15-2019-1659).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Gladysheva-Azgari.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Novikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gladysheva-Azgari, M.V., Slobodova, N.V., Boulygina, E.S. et al. Transcriptomic Profiles of Three Peach (Prunus Persica (L.) Batsch) Cultivars with Different Ripening Periods at the Initial Fruiting Stages. Nanotechnol Russia 18, 480–489 (2023). https://doi.org/10.1134/S2635167622600079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622600079

Navigation