Skip to main content
Log in

Influence of Electric Field during the Chemical Synthesis of Polyaniline on the Surface of Heterogeneous Sulfonated Cation-Exchange Membranes on the Their Structure and Properties

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The influence of electric field in the chemical synthesis of polyaniline on the surface of sulfonated cation-exchange membranes on their structure and properties has been investigated. By using standard contact porosimetry, it has been found that surface modification of heterogeneous membranes with polyaniline, both in static conditions and in an external electric field, does not significantly affect the distribution of water over the effective pore radii and binding energies. It has been shown that the structural heterogeneity of the ion-exchange membrane, rather than the aniline polymerization conditions, has a more significant effect on the morphology of the polyaniline layer on its surface and, hence, on the electrotransport properties. A decrease in the electrical conductivity of the composites obtained with an increase in the quantity of electricity passed during the synthesis of polyaniline on their surface has been revealed. Based on the analysis of the current–voltage characteristics of the samples and their electrical conductivity, the conditions for obtaining materials with the most pronounced asymmetry of the electrotransport properties have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. The experiments were carried out in the laboratory of thin liquid layers at the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

REFERENCES

  1. A. B. Yaroslavtsev, Membranes and Membrane Technologies (Nauchnyi Mir, Moscow, 2013) [in Russian].

    Google Scholar 

  2. A. B. Yaroslavtsev, Russ. Chem. Rev. 85, 1255 (2016).

    Article  CAS  Google Scholar 

  3. E. Yu. Voropaeva, A. A. Il’ina, A. S. Shalimov, et al., RU Patent No. 2352384, Byull. Izobret., No. 11 (2009).

  4. V. I. Zabolotskii, K. V. Protasov, M. V. Sharafan, and A. B. Yaroslavtsev, RU Patent No. 2451540, Byull. Izobret., No. 15 (2012).

  5. J. Li, Sh. Yuan, J. Wang, et al., J. Membr. Sci. 553, 139 (2018).

    Article  CAS  Google Scholar 

  6. T. Luo, S. Abdu, and M. Wessling, J. Membr. Sci. 555, 429 (2018).

    Article  CAS  Google Scholar 

  7. Zh. A. Boeva and V. G. Sergeev, Polym. Sci., Ser. C 56, 144 (2014).

    Article  CAS  Google Scholar 

  8. J. Stejskal, Prog. Polym. Sci. 41, 1 (2015).

    Article  CAS  Google Scholar 

  9. S. Bhadra, D. Khastgir, N. K. Singha, and J. H. Lee, Prog. Polym. Sci. 34, 783 (2009).

    Article  CAS  Google Scholar 

  10. A. B. Yaroslavtsev, Polym. Sci., Ser. A 55 (2013).

  11. C. Heitner-Wirguin, J. Membr. Sci. 120, 1 (1996).

    Article  CAS  Google Scholar 

  12. D. Wu, S. J. Paddison, J. A. Elliott, and S. J. Hamrock, Langmuir 26, 14308 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. J. Liu, R. Suraweera, D. J. Keffer, et al., J. Phys. Chem. C 114, 11279 (2010).

    Article  CAS  Google Scholar 

  14. I. Y. Sapurina, M. E. Kompan, V. V. Malyshkin, et al., Russ. J. Electrochem. 45, 697 (2009).

    Article  CAS  Google Scholar 

  15. S. Tan and D. Belanger, J. Phys. Chem. B 109, 23480 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. I. Yu. Sapurina, M. E. Kompan, A. G. Zabrodskii, et al., Russ. J. Electrochem. 43, 528 (2007).

    Article  CAS  Google Scholar 

  17. N. P. Berezina, N. A. Kononenko, A. A. Sytcheva, et al., Electrochim. Acta 54, 2342 (2009).

    Article  CAS  Google Scholar 

  18. N. A. Kononenko, N. V. Loza, and S. V. Timofeyev, Desalination 241, 36 (2009).

    Article  CAS  Google Scholar 

  19. A. A. Lysova, I. A. Stenina, Y. G. Gorbunova, et al., Russ. J. Electrochem. 47, 579 (2011).

    Article  CAS  Google Scholar 

  20. A. A. Lysova, I. A. Stenina, S. V. Dolgopolov, et al., Dokl. Phys. Chem. 427, 142 (2009).

    Article  CAS  Google Scholar 

  21. N. P. Berezina, N. A. Kononenko, A. N. Filippov, et al., Russ. J. Electrochem. 46, 485 (2010).

    Article  CAS  Google Scholar 

  22. P. A. Yurova, Yu. A. Karavanova, Yu. G. Gorbunova, and A. B. Yaroslavtsev, Pet. Chem. 52, 593 (2012).

    Article  CAS  Google Scholar 

  23. R. K. Nagarale, G. S. Gohil, K. Shahi Vinod, et al., J. Colloid Interface Sci. 277, 162 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. T. Sata, Yu. Ishii, K. Kawamura, and K. Matsusaki, J. Electrochem. Soc. 146, 585 (1999).

    Article  CAS  Google Scholar 

  25. K. V. Protasov, S. A. Shkirskaya, N. P. Berezina, and V. I. Zabolotskii, Russ. J. Electrochem. 46, 1131 (2010).

    Article  CAS  Google Scholar 

  26. N. V. Loza, S. A. Loza, N. A. Kononenko, and A. V. Magalyanov, Pet. Chem. 55, 724 (2015).

    Article  CAS  Google Scholar 

  27. S. A. Shkirskaya, N. A. Kononenko, I. N. Senchikhin, and V. I. Roldugin, Russ. J. Electrochem. 53, 78 (2017).

    Article  CAS  Google Scholar 

  28. N. A. Kononenko, N. V. Loza, S. A. Shkirskaya, et al., J. Solid State Electrochem. 19, 2623 (2015).

    Article  CAS  Google Scholar 

  29. N. V. Loza, S. A. Loza, and N. A. Kononenko, RU Patent No. 2566415, Byull. Izobret., No. 30 (2015).

  30. N. V. Loza, S. V. Dolgopolov, N. A. Kononenko, et al., Russ. J. Electrochem. 51, 538 (2015).

    Article  CAS  Google Scholar 

  31. N. A. Kononenko, N. P. Berezina, S. V. Dolgopolov, et al., RU Patent No. 2487145, Byull. Izobret., No. 19 (2013).

  32. S. V. Dolgopolov, N. V. Loza, N. A. Kononenko, et al., RU Patent No. 2574453, Byull. Izobret., No. 4 (2016).

  33. N. A. Kononenko, M. A. Fomenko, and Yu. M. Volfko-vich, Adv. Colloid Interface Sci. 222, 425 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. M. C. Marti-Calatayud, D. C. Buzzi, M. Garcia-Gabaldon, et al., J. Membr. Sci. 466, 45 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. V.D. Sobolev for the possibility of measuring the ohmic regions of current–voltage curves at the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-58-16005 NTsNIL_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kononenko.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kononenko, N.A., Loza, N.V., Andreeva, M.A. et al. Influence of Electric Field during the Chemical Synthesis of Polyaniline on the Surface of Heterogeneous Sulfonated Cation-Exchange Membranes on the Their Structure and Properties. Membr. Membr. Technol. 1, 229–237 (2019). https://doi.org/10.1134/S2517751619040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751619040036

Keywords:

Navigation