Skip to main content
Log in

Revisiting the problem of astatic ecological optima

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The development of the concept of an ecological optimum is discussed, and experimental data enabling its revision are analyzed. The published data on the effect of fluctuating ecological factors on various parameters of the vital activity of poikilothermic aquatic organisms and some other organisms are given. The need for terms of stationary (or static) and dynamic (or astatic) optima in modern ecology is discussed. Possible mechanisms of optimization of the vital activity of organisms under conditions of varying factors of the environment are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amineva, V.A., Krasyuk, V.V., and Gleizer, S.I., Electrometric analysis of adaptation processes of fishes to environmental factors, in Sovremennye voprosy ekologicheskoi fiziologii ryb (Modern Problems of Ecological Physiology of Fishes), Moscow: Nauka, 1979, pp. 96–101.

    Google Scholar 

  • Arshavskii, I.A., Fiziologicheskie mekhanizmy i zakonomernosti individual’nogo razvitiya (Physiological Mechanisms and Pattern of Individual Development), Moscow: Nauka, 1982.

    Google Scholar 

  • Ashmore, G.M. and Janzen, F.J., Phenotypic variation in smooth softshell turtles (Apalone mutica) from eggs incubated in constant versus fluctuating temperatures, Oecologia, 2003, vol. 134, no. 2, pp. 182–188.

    Article  PubMed  Google Scholar 

  • Bauer, E.S., Teoreticheskaya biologiya (Theoretical Biology), Moscow: Vseross. Istoriko-Etnogr. Muz., 1935.

    Google Scholar 

  • Baule, B., Zu Mitscherlich’s Gesetz der physiologischen Beziehungen, Landw. Jahrb., 1918, no. 51, pp. 363–385.

    CAS  Google Scholar 

  • Bestgen, K.R. and Williams, M.A., Effects of fluctuating and constant temperatures on early development and survival of Colorado squawfish, Trans. Am. Fish. Soc., 1994, vol. 123, no. 4, pp. 574–579.

    Article  Google Scholar 

  • Biette, R.M. and Green, G.N., Growth of underyearling salmon (Oncorhynchus nerka) under constant and cyclic temperatures in relation to live zooplankton size, Can. J. Fish. Aquat. Sci., 1980, vol. 37, no. 2. p. 203.

    Article  Google Scholar 

  • Burgess, L.W. and Griffin, D.M., The influence of diurnal temperature fluctuations on the growth of fungi, New Phytol., 1968, vol. 67, no. 1, pp. 131–137.

    Article  Google Scholar 

  • Carrington, L.B., Armijos, M.V., Lambrechts, L., et al., Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits, PLoS One, 2013, vol. 8, no. 3. p. e58824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champlian, R.A. and Butler, G., Temperature effects on development of the eggs and nymphal stage of Lygus hesperus (Hemiptera: Miridae), Ann. Entomol. Soc. Am., 1967, vol. 60, no. 3, pp. 519–521.

    Article  Google Scholar 

  • Chernyshev, V.B., Ekologiya nasekomykh. Uchebnik (Ecology of Insects: Handbook), Moscow: Mosk. Gos. Univ., 1996.

    Google Scholar 

  • Dajoz, R., Introduction to Ecology, London: Hodder & Stoughton, 1975, 3rd ed.

    Google Scholar 

  • Danilevskii, A.S., The effect of constant and fluctuating temperature on development of eggs of Philosamia cynthia and Antheraea pernyi, Tr. Leningr. O-va Estestvoispyt., 1946, vol. 69, pp. 49–69.

    Google Scholar 

  • Diaz, F. and Buckle, L.F., Effect of the critical thermal maximum on the preferred temperatures of Ictalurus punctatus exposed to constant and fluctuating temperatures, J. Therm. Biol., 1999, vol. 24, no. 3, pp. 155–160.

    Article  Google Scholar 

  • Diana, J.S., The growth of largemouth bass, Micropterus salmoides (Lacepede), under constant and fluctuating temperatures, J. Fish. Biol., 1984, vol. 24, no. 2, pp. 165–172.

    Google Scholar 

  • Dong, L., Weiwei, X., and Xinhua, Z., The effects of temperature and substrate on ontogenetic behavior of bastard halibut, Paralichthys olivaceus (T. et S.), Chin. J. Oceanol. Limnol., 2005, vol. 23, no. 1, pp. 65–71.

    Article  Google Scholar 

  • Du, W.-G. and Feng, J.-H., Phenotypic effects of thermal mean and fluctuations on embryonic development and hatchling traits in a lacertid lizard, Takydromus septentrionalis, J. Exp. Zool., 2008, vol. 309, no. 3, pp. 138–146.

    Article  Google Scholar 

  • Fedorov, V.D. and Gil’manov, T.G., Ekologiya (Ecology), Moscow: Mosk. Gos. Univ., 1980.

    Google Scholar 

  • Flameling, I.A. and Kromkamp, J., Photoacclimation of Scenedesmus protuberans (Chlorophyceae) to fluctuating irradiances simulating vertical mixing, J. Plankton Res., 1997, vol. 19, no. 8, pp. 1011–1024.

    Article  Google Scholar 

  • Galkovskaya, G.A. and Sushchenya, L.M., Rost vodnykh zhivotnykh pri peremennykh temperaturakh (Growth of Aquatic Animals at Fluctuating Temperatures), Minsk: Nauka i Tekhnika, 1978.

    Google Scholar 

  • Grusevich, V.V., Influence of temperature fluctuations on development and survival of channel catfish in embryogenesis, in 4-ya Vses. konf. po rannemu ontogenezu ryb (The 4 All-Union Conf. on Early Ontogenesis of Fishes), Murmansk, 1988, part 1, pp. 67–69.

    Google Scholar 

  • Hagstrum, D.W. and Hagstrum, W.R., A simple device for producting temperatures with an evaluation of the ecological significance of the fluctuating temperatures, Ann. Entomol. Soc. Am., 1970, vol. 63, no. 5, pp. 1385–1389.

    Article  CAS  PubMed  Google Scholar 

  • Halbach, U., Life table data and population dynamics of the rotifer Brachionus calyciflorus Pallas as influenced by periodically oscillating temperature, in Effect of Temperature on Ectothermic Organisms, Berlin: Springer-Verlag, 1973, pp. 120–129.

    Google Scholar 

  • Henry, J.A. and Houston, A.H., Absence of respiratory acclimation to diurnally-cycling temperature conditions in rainbow trout, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1984, vol. 77, no. 4, pp. 727–734.

    Article  Google Scholar 

  • Hokanson, K.E.F., Kleiner, C.F., and Thourlung, T.W., Effects of constant temperatures and diel temperature fluctuations on specific growth and mortality rates and yield of juvenile rainbow trout, Salmo gairdneri, J. Fish. Res. Board Can., 1977, vol. 34, no. 5, p. 639.

    Article  Google Scholar 

  • Igumnova, L.V., Influence of temperature shifts in embryogenesis of European sturgeon Huso huso and starry sturgeon Acipenser stellatus (Acipenseridae), Vopr. Ikhtiol., 1985, vol. 25, no. 3, pp. 478–482.

    Google Scholar 

  • Ivlev, V.S., Elements of physiological hydrobiology, in Fiziologiya morskikh zhivotnykh (Physiology of Marine Animals), Moscow: Nauka, 1966, pp. 3–45.

    Google Scholar 

  • Kharkina, T.G., Markovskaya, E.F., and Sysoeva, M.I., Influence of thermoperiod on growth and development in cucunber, Russ. J. Dev. Biol., 2003, vol. 34, no. 2. p. 121.

    Article  Google Scholar 

  • Khlebovich, V.V. and Mikhailova, O.Yu., Influence of periodical changes of salinity on activity of Hydrobia ulvae, Zool. Zh., 1975, vol. 54, no. 10, pp. 1452–1456.

    Google Scholar 

  • Kokurewicz, B., Witkowski, A., and Kowalewski, M., Influence of constant and variable temperatures on the embryonic development of huchen Hucho hucho, Zool. Pol., 1988, vol. 35, no. 1-4, pp. 79–92.

    Google Scholar 

  • Kompendium der Allgemeinen Biologie, Libbert, E., Ed., Jena: Gustav Fischer Verlag, 1976.

  • Kondrat’eva, E.N., Maksimova, I.V., and Samuilov, V.D., Fototrofnye microorganizmy (Phototrophic Microorganisms), Moscow: Nauka, 1989.

    Google Scholar 

  • Konstantinov, A.S., Growth of fish juveniles in constant and changing supply with oxygen, Vestn. Mosk. Univ., Ser. 16: Biol., 1988, no. 4, pp. 3–7.

    Google Scholar 

  • Konstantinov, A.S., Influence of temperature shifts on growth, energy, and physiology of fish juveniles, Izv. Ross. Akad. Nauk, Ser. Biol., 1993, no. 1, pp. 55–63.

    Google Scholar 

  • Konstantinov, A.S., Role of static and astatistic maximum of abiotic factors in fish life, in I Kongr. ikhtiologov Rossii, Tezisy dokladov (The I Congr. of Russian Ichthyologists, Abstracts of Papers), Moscow: VNIRO, 1997, pp. 221–222.

    Google Scholar 

  • Konstantinov, A.S., Kuznetsov, V.A., and Kostoeva, T.N., Influence of water salinity fluctuations on growth, reproduction, and fecundity of Lymnaea stagnalis L., Usp. Sovrem. Biol., 2007, vol. 127, no. 3, pp. 316–321.

    Google Scholar 

  • Konstantinov, A.S., Kuznetsov, V.A., and Kostoeva, T.N., The systematics of fish metabolic response to changes in hydrogen ion concentrations in the pH gradient field, Inland Water Biol., 2008, vol. 1, no. 3, pp. 274–281.

    Article  Google Scholar 

  • Konstantinov, A.S., Kuznetsov, V.A., and Kostoyeva, T.N., Influence of temperature fluctuations on the embryonic development, growth, and fecundity of Lymnaea stagnalis (L.), Hydrobiol. J., 2009, vol. 45, no. 4, pp. 13–21.

    Google Scholar 

  • Konstantinov, A.S. and Martynova, V.V., Influence of salinity fluctuation on energy of fish juveniles, Vopr. Ikhtiol., 1992, vol. 32, no. 4, pp. 161–166.

    Google Scholar 

  • Konstantinov, A.S., Pushkar’, V.Ya., and Aver’yanova, O.V., Effects of fluctuations of abiotic factors on the metabolism of some hydrobionts, Biol. Bull., 2003a, vol. 30, no. 6, pp. 610–616.

    Article  Google Scholar 

  • Konstantinov, A.S., Pushkar’, V.Ya., and Zdanovich, V.V., Concordance of changes of metabolism and growth of fishes affected by water salinity changes, Vestn. Mosk. Univ., Ser. 16: Biol., 2003b, no. 2, pp. 40–44.

    Google Scholar 

  • Konstantinov, A.S., Pushkar’, V.Ya., Zdanovich, V.V., and Solov’eva, E.A., Influence of temperature fluctuations on growth rate and reproduction of freshwater planktonic algae, Vestn. Mosk. Univ., Ser. 16: Biol., 1998b, no. 1, pp. 47–50.

    Google Scholar 

  • Konstantinov, A.S., Pushkar’, V.Ya., Zdanovich, V.V., and Solov’eva, E.A., Influence of temperature fluctuations on production of planktonic algae Scenedesmus quadricauda, Vestn. Mosk. Univ., Ser. 16: Biol., 1998c, no. 2, pp. 49–53.

    Google Scholar 

  • Konstantinov, A.S., Tagirova, N.A., Stepanenko, V.M., and Solov’eva, E.A., Influence of fluctuations of some abiotic factors on growth, reproduction, and energy of Euchlanis dilatata Enrenberg, Gidrobiol. Zh., 1995c, no. 6, pp. 25–29.

    Google Scholar 

  • Konstantinov, A.S., Vechkanov, V.S., and Kuznetsov, V.A., Some growth features of fish juveniles in pH gradient, Vestn. Mosk. Univ., Ser. 16: Biol., 1995a, no. 4, pp. 28–32.

    Google Scholar 

  • Konstantinov, A.S., Vechkanov, V.S., and Kuznetsov, V.A., Influence of change in hydrogen ion concentration on growth of fish juveniles, Vestn. Mosk. Univ., Ser. 16: Biol., 1995b, vol. 35, no. 1, pp. 120–125.

    Google Scholar 

  • Konstantinov, A.S., Vechkanov, V.S., and Kuznetsov, V.A., Influence of pH shifts on energy and biology of fishes, Vopr. Ikhtiol., 1998a, vol. 38, no. 4, pp. 530–536.

    Google Scholar 

  • Konstantinov, A.S., Vechkanov, V.S., Kuznetsov, V.A., and Ruchin, A.B., Influence of changes in intensity and spectral composition of light on growth and energy of fish juveniles, Gidrobiol. Zh., 2002, vol. 38, no. 3, pp. 72–80.

    Google Scholar 

  • Konstantinov, A.S. and Zdanovich, V.V., Some features of fish growth in fluctuating temperature regime, Vopr. Ikhtiol., 1986, vol. 26, no. 3, pp. 448–456.

    Google Scholar 

  • Konstantinov, A.S. and Zdanovich, V.V., Influence of temperature oscillation on growth and body biochemical composition of fish juveniles, Vopr. Rybolov., 2003, vol. 4, no. 2, pp. 347–355.

    Google Scholar 

  • Konstantinov, A.S., Zdanovich, V.V., and Sholokhov, A.M., Astatic temperature conditions as the factors for optimization of growth, energy, and physiology of fish juveniles, Vestn. Mosk. Univ., Ser. 16: Biol., 1991, no. 2, pp. 38–44.

    Google Scholar 

  • Korwin-Kossakowski, M. and Jezierska, B., The influence of thermal conditions on postembryonic development of some species of Coregonidae and Cyprinidae, Zool. Pol., 1984, vol. 31, nos. 1–4, pp. 43–56.

    Google Scholar 

  • Koss, T.F. and Houston, A.H., Hemoglobin levels and ionic composition in goldfish exposed to constant and diurnally cycling temperatures, Can. J. Fish. Aquat. Sci., 1981, vol. 38, no. 10. p. 1182.

    Article  CAS  Google Scholar 

  • Kozhanchikov, I.V., Temperature limits for life. VII. Physiological characteristics of stenoand eurythermal insects, Zool. Zh., 1936, vol. 15, no. 2, pp. 217–225.

    Google Scholar 

  • Kuznetsov, V.A., Astatic environmental factors as the ecological optimum for hydrobionts, Doctoral (Biol.) Dissertation, Saratov: Saratov. State Univ., 2005.

    Google Scholar 

  • Kuznetsov, V.A., Konstantinov, A.S., and Lukiyanov, S.V., Influence of pH shifts on embryonal-larvae development of Esox lucius L., Usp. Sovrem. Biol., 2009, vol. 129, no. 3, pp. 1–8.

    Google Scholar 

  • Kuznetsov, V.A. and Lobachyov, Ye.A., Effect of pH on growth and development of Xenopus laevis larvae, Zool. Zh., 2005, vol. 84, no. 5, pp. 1344–1350.

    Google Scholar 

  • Kuznetsov V.A. and Lobachyov, Ye.A., The effect of salinity fluctuations on growth and development of the larvae of march frog Rana ridibunda, Hydrobiol. J., 2007, vol. 43, no. 3, pp. 71–79.

    Article  Google Scholar 

  • Kuznetsov, V.A. and Lukiyanov, S.V., Influence of temperature fluctuations on embryonal-larval development of Esox lucius L. (Salmoniformes, Esocidae), Gidrobiol. Zh., 2013, vol. 49, no. 5, pp. 67–79.

    Google Scholar 

  • Kuznetsov, V.A. and Ruchin, A.B., Influence of change of pH and illumination on growth and development of march frog Rana ridibunda, Zool. Zh., 2001, vol. 80, no. 10, pp. 1246–1251.

    Google Scholar 

  • Kuznetsov, V.A., Ruchin, A.B., and Vechkanov, V.S., Influence of photoperiod on growth and intensity of feeding of fry of some fish species, Hydrobiol. J., 2005, vol. 41, no. 2, pp. 103–109.

    Article  Google Scholar 

  • Lavrovskii, V.V., Bionic principles of control of closed fishery systems, Sb. Nauch. Tr. Vseross. Nauchno-Issled. Inst. Presnovodnogo Rybn. Khoz., 1985, no. 46, pp. 30–36.

    Google Scholar 

  • Lapkin, V.V., Poddubnyi, A.G., and Pyatnitskii, I.I., The method of fish growing in artificial conditions, Biol. Vnutrennkh Vod, 1986, no. 71, pp. 62–66.

    Google Scholar 

  • Lebedeva, N.E., Golovkina, T.B., Golovin, P.P., et al., Specific biochemical composition of fish mucosa in stress, in Mater. mezhd. konf. “Sovremnnye problemy fiziologii i biokhimii vodnykh organizmov” (Proc. Int. Conf. “Modern Problems of Physiology and Biochemistry of Aquatic Organisms”), Petrozavodsk, 2004, pp. 79–80.

    Google Scholar 

  • Lobachev, E.A., Influence of changes of environmental factors on embryonal-larval development of Amphibia, Cand. Sci. (Biol.) Dissertation, Saransk: Mordovian State Univ., 2008.

    Google Scholar 

  • Lock, A.R. and McLaren, I.A., The effects of varying and constant temperatures on the size of marine copepods, Limnol. Oceanogr., 1970, vol. 2, no. 15, pp. 638–640.

    Article  Google Scholar 

  • Lopatina, E.B., Effect of daily thermoperiods on the duration of individual development in ants (Hymenoptera, Formicidae), Entomol. Rev., 2003, vol. 83, no. 3. p. 1092.

    Google Scholar 

  • Lozina-Lozinskii, L.K., Ekologiya khlopkovoi sovki. Opyt ekologicheskoi monografii vida (Ecology of Cotton Bollworm: Experience of Ecological Monograph of a Species), Leningrad: Estestv.-Nauch. Inst. im. P.F. Lesgafta, 1941.

    Google Scholar 

  • Luczynski, M., Survival of Coregonus albula embryos incubated at different thermal conditions, Hydrobiologia, 1985, vol. 121, no. 1, pp. 51–58.

    Article  Google Scholar 

  • Lukiyanov, S.V., Influence of changes in abiotic factors (pH, salinity, and temperature) on fishes in embryonallarval development, Cand. Sci. (Biol.) Dissertation, Saransk: Mordovian State Univ., 2010.

    Google Scholar 

  • Mel’nik, I.V. and Kostyurina, A.N., Influence of photoperiod duration on growth rate and energetic parameters of juveniles of Timiryazev’s tilapia, Vestn. Astrakh. Gos. Tekh. Univ., Ser. Rybn. Khoz., 2010, no. 2, pp. 112–115.

    Google Scholar 

  • Messenger, P.S., Bioclimatic studies of the aphid parasite Praon exsoletum. 2. Thermal limits to development and effects of temperature on rate of development and occurrence of diapause, Ann. Entomol. Soc. Am., 1969, vol. 62, no. 5, pp. 1026–1031.

    Article  Google Scholar 

  • Miranda, L.A., Pisano, A., and Paz, D., Influencia del fotoperiodo y temperatura en el crecimiento corporal y metamorphosis de Rana catesbeiana, Rev. Mus. Argent. Cienc. Nat. Ecol., 1993, vol. 4, no. 5, pp. 53–65.

    Google Scholar 

  • Mitsherlich, E.A., Das Gesetz des Minimums und das Gesetz des abnehmenden Bodentrags, Landw. Jahrb., 1909, no. 38, pp. 537–552.

    Google Scholar 

  • Mityanina, I.F., Growth and development of daphnia and rotifers in ontogenesis and subsequent parthenogenetic generations depending on temperature, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Minsk: Inst. Zool., Acad. Sci. Belarus. SSR, 1983.

    Google Scholar 

  • Mu, Y., Wang, F., Dong, S., et al., Effects of salinity fluctuation pattern on growth and energy budget of juvenile shrimp Fenneropenaeus chinensis, J. Shellfish Res., 2005, vol. 24, no. 4, pp. 1217–1221.

    Article  Google Scholar 

  • Mustaev, S.B. and Akimov, V.A., Self-control as the basic principle of ecological concept of intensification of fishery, Rybn. Khoz., 1992, no. 1, pp. 38–42.

    Google Scholar 

  • Naumov, N.P., Ekologiya zhivotnykh (Ecology of Animals), Moscow: Sovetskaya Nauka, 1961.

    Google Scholar 

  • Odum, E.P. Fundamentals of Ecology, Philadelphia: W.B. Saunders, 1953.

    Google Scholar 

  • Ozernyuk, N.D., Minimization principles of metabolism and optimal conditions for species development, Izv. Ross. Akad. Nauk, Ser. Biol., 1993, no. 1, pp. 8–15.

    Google Scholar 

  • Parker, J.R., Some effects of temperature and moisture upon Melanophys mexicanus and Camnula pellicida Scudder. (Orthoptera), Bull.-Mont., Agric. Exp. Stn., 1930, no. 223, pp. 1–132.

    Google Scholar 

  • Podrabsky, J.E. and Somero, G.N., Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus, J. Exp. Biol., 2004, vol. 207, no. 13, pp. 2237–2254.

    Article  CAS  PubMed  Google Scholar 

  • Pozmogova, I.N., Kul’tivirovanie mikroorganizmov v peremennykh usloviyakh (Cultivation of Microorganisms in Changing Conditions), Moscow: Nauka, 1983.

    Google Scholar 

  • Prodan, S.E., Dependence of morphometric features of the grass carp larvae on incubation temperature, in Vosproizvodstvo i vyrashchivanie ryb v vodoemakh Moldovy (Reproduction and Growing of Fishes in Reservoirs of Moldova), Chisinau, 1991, pp. 80–86.

    Google Scholar 

  • Prosser, L., Comparative Animal Physiology, New York: W.B. Saunders, 1973.

    Google Scholar 

  • Pushkar’, V.Ya., Zdanovich, V.V., and Kelekhsaev, M.Z., The impact of short-term fluctuations of temperature on the production indices of aquatic animals: Oreochromis niloticus (L.) and Pistia stratiotes (L.), Inland Water Biol., 2010, vol. 3, no. 3, pp. 282–290.

    Article  Google Scholar 

  • Radkevich, V.A., Ekologiya (Ecology), Minsk: Vysshaya Shkola, 1998.

    Google Scholar 

  • Recsetar, M.S. and Bonar, S.A., Survival of apache trout eggs and alevins under static and fluctuating temperature regimes, Trans. Am. Fish. Soc., 2013, vol. 142, no. 2, pp. 373–379.

    Article  Google Scholar 

  • Reynolds, P.E., Smith, W.H., and Jensen, K.F., Effect of constant and fluctuating temperatures on the in vitro growth of Ceratocystis species, Trans. Br. Mycol. Soc., 1972, vol. 59, no. 1, pp. 1–9.

    Article  Google Scholar 

  • Ruchin, A.B., Influence of light characteristics on development, growth, and physiological-biochemical characteristics of fishes and amphibians, Extended Abstract of Doctoral (Biol.) Dissertation, Saransk: Mordovian State Univ., 2008.

    Google Scholar 

  • Ruchin, A.B., Vechkanov, V.S., and Kuznetsov, V.A., Growth and feeding intensity of young carp Cyprinus carpio under different constant and variable monochromatic illuminations, J. Icthiol., 2002, vol. 42, pp. 191–196.

    Google Scholar 

  • Sarviro, V.S., Determination of temperature optimum of poikilotherm animals, Ekologiya, 1977, vol. 18, no. 1, pp. 14–18.

    Google Scholar 

  • Sarviro, V.S., Ecological assessment of the influence of thermal fluctuations on growth parameters of Gammarus lacustris Sars., Gidrobiol. Zh., 1983, vol. 19, no. 4, pp. 71–73.

    Google Scholar 

  • Schaefer, J. and Ryan, A., Developmental plasticity in the thermal tolerance of zebrafish Danio rerio, J. Fish Biol., 2006, vol. 69, no. 3, pp. 722–734.

    Article  Google Scholar 

  • Schneider, J.C., Copeland, J., and Wolgamood, M., Tolerance of incubating walleye eggs to temperature fluctuation, North Am. J. Aquacult., 2002, vol. 64, no. 1, pp. 75–76.

    Article  Google Scholar 

  • Selye, H. Stress sans Detresse, Montreal: La Presse, 1974.

    Google Scholar 

  • Shchepetil’nikova, V.A. and Kasinskaya, L.V., Change of trichogramme depending on teaching conditions, in Povedenie nasekomykh kak osnova dlya razrabotki mer bor’by s vreditelyami sel’skogo i lesnogo khozyaistva (Behavior of Insects as the Basis for Development of Prevention Measures of Impact of Pests on Agriculture and Forestry), Kiev: Naukova Dumka, 1975, pp. 201–207.

    Google Scholar 

  • Shelford, V.E., Animal Communities in Temperate America, Chicago: Univ. Chicago Press, 1913.

    Book  Google Scholar 

  • Shelford, V.E., Laboratory and Field Ecology, Baltimore: William and Wilkins, 1929.

    Google Scholar 

  • Shilov, I.A., Ekologiya (Ecology), Moscow: Vysshaya Shkola, 2001.

    Google Scholar 

  • Skulachev, V.P., Akkumulyatsiya energii v kletke (Accumulation of Energy in the Cell), Moscow: Nauka, 1969.

    Google Scholar 

  • Smetnik, A.I. and Izhevskii, I.I., Massovoe razvedenie nasekomykh s uspol’zovaniem sredstv mekhanizatsii (Automated Mass Reproduction of Insects), Moscow: Vses. Akad. S-kh. Nauk im. V.I. Lenina, 1978.

    Google Scholar 

  • Stepanovskikh, A.S., Obshchaya ekologiya (General Ecology), Moscow: Yuniti-Dana, 2001.

    Google Scholar 

  • Stroganov, N.S., Ekologicheskaya fiziologiya ryb (Ecological Physiology of Fishes), Moscow: Mosk. Gos. Univ., 1962.

    Google Scholar 

  • Su, Y., Ma, S., and Feng, C., Effects of salinity fluctuation on the growth and energy budget of juvenile Litopenaeus vannamei at different temperatures, J. Crustacean Biol., 2010, vol. 30, no. 3, pp. 430–434.

    Article  Google Scholar 

  • Svirskii, A.M. and Golovanov, V.K., Changes and possible reasons of thermal-control behavior of fishes, Usp. Sovrem. Biol., 1999, vol. 119, no. 3, pp. 259–264.

    Google Scholar 

  • Sysoyeva, M.I. and Markovskaya, E.F., On the formalization of temperature dependence of plant developmental rate, Russ. J. Dev. Biol., 2003, vol. 34, no. 2, pp. 102–105.

    Article  Google Scholar 

  • Tian, X., Dong, S., Wang, F., and Wu, L., The growth of juvenile Chinese shrimp, Fenneropenaeus chinensis Osbeck, at constant and dial fluctuating temperatures, J. Shellfish Res., 2006, vol. 25, no. 3, pp. 1007–1011.

    Google Scholar 

  • Verbitsky, V.B., The notion of ecological optimum and the determination of this optimum in freshwater poikilothermic animals, Zh. Obshch. Biol., 2008, vol. 69, no. 1, pp. 44–56.

    Google Scholar 

  • Veselova, T.V., Veselovskii, V.A., and Chernavskii, D.S., Stress u rastenii (Stress in the Plants), Moscow: Nauka, 1993.

    Google Scholar 

  • Vinberg, G.G., Intensivnost’ obmena i pishchevye potrebnosti ryb (Intensity of Metabolism and Food Requirement of Fishes), Minsk: Belorus. Gos. Univ., 1956.

    Google Scholar 

  • Vlasov, V.P., Maslova, N.I., Ponomarev, S.V., and Bakaneva, Yu.M., Influence light on growth and development of fishes, in Vestn. Astrakh. Gos. Tekh. Univ., Ser. Rybn. Khoz., 2013, no. 2, pp. 24–34.

    Google Scholar 

  • Vondrack, B., Wurtsbaugh, W.A., and Cech, J.J., Growth and reproduction of the mosquitofish, Gambusia affinis, in relation to temperature and ration level: consequences for life history, Environ. Biol. Fish., 1988, vol. 21, no. 1, pp. 12–22.

    Google Scholar 

  • Walsh, P. and Legendre, L., Photosynthesis of natural phytoplankton under high frequency light fluctuations simulating those induced by sea surface waves, Limnol. Oceanogr., 1983, vol. 28, no. 4, pp. 688–697.

    Article  Google Scholar 

  • Weidensaul, T.C. and Wood, F.A., Response of Fusarium solani to constant and fluctuating temperatures and its relationship to Fusarium cancer of sugar maple, Phytopathology, 1974, vol. 64, no. 7, pp. 1018–1024.

    Article  Google Scholar 

  • Wurtsbaugh, W.A. and Neverman, D., Post-feeding thermotaxis and daily vertical migration in a larval fish, Nature, 1988, vol. 333, no. 6176, pp. 846–848.

    Article  Google Scholar 

  • Yakovlev, N.N., Zhivoe i sreda (Living Organisms and Environment), Leningrad: Nauka, 1986.

    Google Scholar 

  • Zaar, E.I., The effect of diurnal shift of temperature on reproduction of Paramecium caudatum, Tsitologiya, 1969, vol. 11, no. 6, pp. 778–784.

    CAS  Google Scholar 

  • Zaar, E.I., Topolovskii, V.A., and Tribis, Zh.M., Role of changing temperatures on reproduction of Paramecium caudatum, Zh. Obshch. Biol., 1977, vol. 38, no. 4, pp. 609–619.

    Google Scholar 

  • Zaprudnova, R.A., Metabolism and regulation of cations in freshwater fishes in stress, Extended Abstract of Cand. Sci. (Biol.) Dissertation, Borok: Papanin Inst. Inland Waters, Russ. Acad. Sci., 2003.

    Google Scholar 

  • Zdanovich, V.V., Influence of changing temperature on hematologic parameters of the common carp and Prussian carp, Biol. Nauki, 1990, no. 12, pp. 76–81.

    Google Scholar 

  • Zdanovich, V.V., Some features of growth of Mozambique tilapia Oreochromis mossambicus at constant and changing temperatures, Vopr. Ikhtiol., 1999, vol. 39, no. 1, pp. 121–128.

    Google Scholar 

  • Zdanovich, V.V., Aver’yanova, O.V., and Pushkar’, V.Ya., Embryonal and larvae development of loach Misgurnus fossilis at constant and periodically changing temperatures, Vestn. Mosk. Univ., Ser. 16: Biol., 2001, no. 2, pp. 41–45.

    Google Scholar 

  • Zdanovich, V.V., Insarova, I.D., and Dolgova, A.V., Influence on constant and fluctuating temperature on protein synthesis by Penicillium chrysogenum culture, Mikol. Fitopatol., 1998, vol. 32, no. 3, pp. 29–32.

    CAS  Google Scholar 

  • Zdanovich, V.V., Panov, V.P., and Kelekhsaev, M.Z., Growth and production parameters of rainbow trout Oncorhynchus mykiss Walbaum juveniles at constant temperatures and temperature gradient, Izv. Timiryazevsk. S-kh. Akad., 2013, no. 1, pp. 97–103.

    Google Scholar 

  • Zdanovich, V.V. and Pushkar’, V.Ya., Biological productivity and metabolism of hydrobionts in recirculation aquaculture at constant and changing thermal regimes, Vopr. Rybolov., 2008, vol. 9, no. 3, pp. 724–735.

    Google Scholar 

  • Zdanovich, V.V., Pushkar’, V.Y., and Kelekhsaev, M.Z., Specific features of growth and energetics of juvenile rainbow trout Parasalmo (Oncorhynchus) mykiss at constant temperature and its short-time periodic deviations into the upper suboptimal zone, J. Ichthyol., 2011, vol. 51, no. 7, pp. 528–535.

    Article  Google Scholar 

  • Zubareva, E.L., The effect of drastic deviations of water temperature on survival rate of the grass carp, in Vses. soveshchanie “Rastitel’noyadnye ryby i promyshlennoe rybovodstvo,” oktyabr’ 1980, Tezisy dokladov (AllUnion Meeting “Herbivorous Fishes and Industrial Fish Farming,” October 1980, Abstracts of Papers), Tashkent: Fan, 1980, p. 162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kuznetsov.

Additional information

Original Russian Text © V.A. Kuznetsov, V.V. Zdanovich, E.A. Lobachov, S.V. Lukiyanov, 2015, published in Uspekhi Sovremennoi Biologii, 2015, Vol. 135, No. 5, pp. 437–452.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, V.A., Zdanovich, V.V., Lobachov, E.A. et al. Revisiting the problem of astatic ecological optima. Biol Bull Rev 6, 164–176 (2016). https://doi.org/10.1134/S2079086416020043

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086416020043

Keywords

Navigation