Skip to main content
Log in

Neurointerfaces: Review and development

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Electrical activity seems to be the key issue for disclosing information processing mechanisms in neuronal networks; however, the related phenomena such as long-term memory, learning behavior and synaptic plasticity have not been adequately understood yet on cellular level. A great challenge in the fundamental research and practical implementation of those phenomena is to build up multi-electrode array (MEA) devices for simultaneous neuronal recordings and stimulation. We outline the state-of-the-art MEA designs, development trends, and benefits and shortcomings of the MEA concept. As a rule, the general task in neurointerface designing is to achieve biocompatible, low-invasive interface performance and the spatio-temporal resolution. In this paper, we propose and describe two innovative neurointerface designs. One of these designs is introduced as a conceptual device based on a dense array of vertically standing semiconductor microtubes, which can be implemented in next-generation in vivo neuronal interfaces. Another design is a pilot in vitro MEA device included 60 planar patch-clamp electrode sites array. Here, we report results of measurements performed with the help of patch-clamp electrodes, each of the electrodes is a kind of a 2 μm diameter pipette that can be used for making contacts to the cell membrane. An advantageous feature of the method consists in that the treated cells have no immediate contact with the metal as they contact with the microchannel conducting liquid, or ionic conductor; this approach ensures more adequate measurements and, simultaneously, it improves the cell survivability during experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aregueta-Robles, U.A., Woolley, A.J., Poole-Warren, L.A., et al., Organic electrode coatings for next-generation neural interfaces, Front. Neuroeng., 2014, vol. 7, article 15(18P). doi: 10.3389/fneng.2014.00015

    Article  Google Scholar 

  • Aryasomayajula, A., Perike, S., Henselc, R., Posseckardt, J., Gerlach, G., and Funk, H.W., A novel patch micro electrode array for sensing ionic membrane currents, in Proc. Eurosensors XXV. September 4–7, 2011, Athens, Greece.

    Google Scholar 

  • Baranauskas, G., Maggiolini, E., Castagnola, E., et al., Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signalto-noise ratio, J. Neural Eng., 2011, vol. 8, p. 066013.

    Article  PubMed  Google Scholar 

  • Bareket-Keren, L. and Hahein, Y., Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects, Front. Neural Circuits, 2013, vol. 6.

  • Bruggemann, A., George, M., Klau, M., Beckler, M., Steindl, J., Behrends, J.C., and Fertig, N., High quality ion channel analysis on a chip with the NPC technology, Assay Drug Dev. Technol., 2003, vol. 1, no. 5, pp. 665–673.

    Article  CAS  PubMed  Google Scholar 

  • Brunetti, V., Maiorano, G., Rizello, L., et al., Neurons sense nanoscale roughness with nanometer sensitivity, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 14, pp. 6264–6269.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Buzsaki, G., Large-scale recording of neuronal ensembles, Nat. Neurosci., 2004, vol. 7, pp. 446–451.

    Article  CAS  PubMed  Google Scholar 

  • Buzsaki, G., Anastassiou, C.A., and Koch, C., The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes, Nat. Rev. Neurosci., 2012, vol. 13, pp. 407–420.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, P.K., Jones, K.E., Huber, R.J., et al., A siliconbased, three-dimensional neural interface: manufacturing processes for an intracortical electrode array, IEEE Trans. Biomed. Eng., 1991, vol. 38, pp. 758–768.

    Article  CAS  PubMed  Google Scholar 

  • Carandini, M., From circuits to behavior: a bridge too far?, Nat. Neurosci., 2012, vol. 15, no. 4, pp. 507–509.

    Article  CAS  PubMed  Google Scholar 

  • Chandrakasan, A.P., Verma, N., and Daly, D.C., Ultralowpower electronics for biomedical applications, Annu. Rev. Biomed. Eng., 2008, vol. 10, pp. 247–274.

    Article  CAS  PubMed  Google Scholar 

  • Chang, C.-W. and Chiou, J.-C., Development of a three dimensional neural sensing device by a stacking method, Sensors, 2010, vol. 10, pp. 4238–4252.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cogan, S.F., Neural stimulation and recording electrodes, Annu. Rev. Biomed. Eng., 2008, vol. 10, pp. 275–309.

    Article  CAS  PubMed  Google Scholar 

  • Cullen, D.K., Wolf, J.A., Vernekar, V.N., et al., Neural tissue engineering and biohybridized microsystems for neurobiological investigation in vitro (part 1), Crit. Rev. Biomed. Eng., 2011, vol. 39, pp. 201–240.

    Article  PubMed  Google Scholar 

  • Dale, T.J., Townsend, C., Hollands, E.C., and Trezise, D.J., Population patch clamp electrophysiology: a breakthrough technology for ion channel screening, Mol. Biosyst., 2007, vol. 3, pp. 714–722.

    Article  CAS  PubMed  Google Scholar 

  • Du, J.G., Roukes, M.L., and Masmanidis, S.C., Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates, J. Micromech. Microeng., 2009, vol. 19, p. 075008.

    Article  Google Scholar 

  • Du, J.G., Blanche, T.J., Harrison, R.R., et al., Multiplexed, high density electrophysiology with nanofabricated neural probes, PLoS ONE, 2011, vol. 6, no. 10, p. e26204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fertig, N., Tilke, A., Blick, R.H., Kotthaus, J.P., Behrend, J.C., and ten Bruggencate, G., Stable integration of isolated cell membrane patches in a nanomachined aperture, Appl. Phys. Lett., 2000, vol. 77, pp. 1218–1220.

    Article  CAS  Google Scholar 

  • Fertig, N., Blick, R.H., and Behrends, J.C., Whole cell patch clamp recording performed on a planar glass chip, Biophys. J., 2002, vol. 82, pp. 3056–3062.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grill, W.M., Norman, S.E., and Bellamkonda, R.V., Implanted neural interfaces: biochallenges and engineered solutions, Annu. Rev. Biomed. Eng., 2009, vol. 11, p. 124.

    Article  Google Scholar 

  • Guthrie, H., Livingston, F.S., Gubler, U., and Garippa, R., A place for high-throughput electrophysiology in cardiac safety: screening hERG cell lines and novel compounds with the IonWorks HT system, J. Biomol. Screen., 2006, vol. 10, no. 8, pp. 832–840.

    Article  Google Scholar 

  • Henze, D.A., Borhegyi, Z., Csicvari, J., et al., Intracellular features predicted by extracellular recordings in the hippocampus in vivo, J. Neurophysiol., 2000, vol. 84, pp. 390–400.

    CAS  PubMed  Google Scholar 

  • Herwik, S., Kisban, S., Aarts, A.A.A., et al., Fabrication technology for silicon-based microprobe arrays used in acute and sub-chronic neural recording, J. Micromech. Microeng., 2009, vol. 19, p. 074008.

    Article  Google Scholar 

  • Hubel, D.H., Tungsten microelectrode for recording from single units, Science, 1957, vol. 125, pp. 549–550.

    Article  CAS  PubMed  Google Scholar 

  • John, V.H., Dale, T.J., Hollands, E.C., Chen, M.X., Partington, L., Downie, D.L., Meadows, H.J., and Trezise, D.J., Novel 384-well population patch clamp electrophysiology assays for Ca2+-activated K+ channels, J. Biomol. Screen., 2007, vol. 12, p. 50. doi: 10.1177/ 1087057106294920

    Article  CAS  PubMed  Google Scholar 

  • Kiss, L., Bennett, P.B., Uebele, V.N., Koblan, K.S., Kane, S.A., Neagle, B., and Schroeder, K., High throughput ion-channel pharmacology: planar-arraybased voltage clamp, Assay Drug Dev. Technol., 2003, vol. 1, pp. 127–135.

    Article  CAS  PubMed  Google Scholar 

  • Klemic, K.G., Klemic, J.F., Reed, M.A., and Sigworth, F., Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells, Biosens. Bioelectron., 2002, vol. 17, pp. 597–604.

    Article  CAS  PubMed  Google Scholar 

  • Kopylov, A.V. and Prinz, V.Ya., Graphene-semiconductor tubular needles for operation on living cells, Vestn. NGU, Ser. Fiz., 2010, vol. 5, no. 1, pp. 91–96.

    Google Scholar 

  • Lai, H.-Y., Liao, L.-D., Lin, C.-T., et al., Design, simulation and experimental validation of a novel flexible neural probe for deep brain stimulation and multichannel recording, J. Neural Eng., 2012, vol. 9, p. 036001.

    Article  PubMed  Google Scholar 

  • Lebedev, M.A. and Nicolelis, A.L., Brain-machine interfaces: past, present and future, Trends Neurosci., 2006, vol. 29, no. 9, pp. 536–546.

    Article  CAS  Google Scholar 

  • Lee, C.K. and Huguenard, J.R., Martinotti cells: community organizers, Neuron, 2011, vol. 69, no. 6, pp. 1042–1045.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lehnert, T., Gijs, M.A.M., Netzer, R., and Bischoff, U., Realization of hollow sio2 micronozzle for electrical measurements on living cells, Appl. Phys. Lett., 2002, vol. 81, pp. 5063–5065.

    Article  CAS  Google Scholar 

  • Levy, R.B. and Reyes, A.D., Spatial profile of excitatory and inhibitory synaptic connectivity in mouse primary auditory cortex, J. Neurosci., 2012, vol. 32, no. 16, pp. 5609–5619.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li, X., Klemic, K.G., Reed, M.A., and Sigworth, F.J., Microfluidic system for planar patch clamp electrode arrays, Nano Lett., 2006, vol. 6, no. 4, pp. 815–819.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig, K.A., Langhals, N.B., Joseph, M.D., et al., Poly(3,4-ethylenedioxythiophene) (pedot) polymer coatings facilitate smaller neural recording electrodes, J. Neural Eng., 2011, vol. 8, p. 014001.

    Article  PubMed Central  PubMed  Google Scholar 

  • Maccione, A., Gandolfo, M., Tedesco, M., et al., Experimental investigation on spontaneously active hippocampal cultures recorded by means of high-density MEAs: analysis of the spatial resolution effects, Front. Neuroeng., 2010, vol. 3, article 4, pp. 1–12. doi: 10.3389/fneng.2010.00004

    Google Scholar 

  • Martina, M., Luk, C., Py, C., Martinez, D., Comas, T., Monette, R., Denhoff, M., Syed, N., and Mealing, G.A., Recordings of cultured neurons and synaptic activity using patch-clamp chips, J. Neural Eng., 2011, vol. 8, p. 034002.

    Article  PubMed  Google Scholar 

  • Martinez, D., Py, C., Denhoff, M.W., Martinac, M., Monette, R., Comas, T., Luk, C., Syed, N., and Mealing, G., High-fidelity patch-clamp recordings from neurons cultured on a polymer microchip, Biomed. Microdevices, 2010, vol. 12, pp. 977–985. doi 10.1007/s10544010-9452-z

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, P.T., Rao, M.P., and Otto, K.J., Simultaneous recording of rat auditory cortex and thalamus via a titanium-based, microfabricated, microelectrode device, J. Neural. Eng., 2011, vol. 8, p. 046007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Najafi, K., Wise, K.D., and Mochizuki, T., A high-yield IC-compatible multichannel recording array, IEEE Trans. Electron. Devices, 1985, vol. 32, pp. 1206–1211.

    Article  Google Scholar 

  • Napoli, A., Xie, J., and Obeid, I., Understanding the temporal evolution of neuronal connectivity in cultured networks using statistical analysis, BMC Neurosci., 2014, vol. 15, no. 1, pp. 17–27.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nicolelis, M.A.L., Dimitrov, D., Carmena, J.M., et al., Cronic, multisite, multielectrode recordings in macaque monkeys, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 11041–11046.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oberlaender, M., Boudewijns, Z., Kleelec, T., et al., Threedimensional axon morphologies of individual layer 5neuron indicate cell type-specific intracortical pathways for whisker motion and touch, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, no. 10, pp. 4188–4193.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pantoja, R., Nagarah, J.M., Starace, D.M., Melosh, N.A., Blunck, R., Bezanilla, F., and Heath, J.R., Silicon chip-based patch-clamp electrodes integrated with pdms microfluidics, Biosens. Bioelectron, 2004, vol. 20, pp. 509–517.

    Article  CAS  PubMed  Google Scholar 

  • Prinz, A.V., Method for fabrication of array of extended semiconductor microtubes, Nano-Mikrosist. Tekhn., 2013, no. 10, pp. 5–7.

    Google Scholar 

  • Prinz, A.V. and Prinz, V.Ya., Application of semiconductor microand nanotubes in biology, Surf. Sci., 2003, vol. 532-535, pp. 911–915.

    Article  CAS  Google Scholar 

  • Prinz, V.Ya., Seleznev, V.A., and Gutakovsky, A.K., Selfformed InGaAs/GaAs nanotubes: concept, fabrication, properties, in Proc. of the 24th Intern. Conf. on the Physics of Semiconductors, Gershoni, D., Ed., World Scientific, Singapore, 1998.

    Google Scholar 

  • Prinz, V.Ya., Seleznev, V.A., Gutakovsky, A.K., Chehovskiy, A.V., Preobrazenskii, V.V., Putyato, M.A., and Gavrilova, T.A., Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays, Physica E, 2000, vol. 6, nos 1/4, pp. 828–831.

    Article  CAS  Google Scholar 

  • Prinz, A.V., Prinz, V.Ya., and Seleznev, V.A., Semiconductor microand nanoneedles for microinjections andink-jet printing, Microelectron. Eng., 2003a, vols. 67/68, pp. 782–788.

    Article  Google Scholar 

  • Prinz, V.Ya., Seleznev, V.A., and Chekhovski, A.V., Selfforming of semiconductor microand nanotubes, Mikrosist. Tekhn., 2003b, no. 6, pp. 29–34.

    Google Scholar 

  • Prinz, V.Ya., Golod, S.V., and Prinz, A.V., Integrated hollow needle and method for its fabrication, RF Patent No. 2341299, 2008.

    Google Scholar 

  • Py, C., Denhoff, M.W., Martinac, M., Monette, R., Comas, T., Ahuja, T., Martinez, D., Wingar, S., Caballero, J., Laframboisea, S., Mielkec, J., Bogdanov, A., Luk, C., Syed, N., and Mealing, G., A novel silicon patch-clamp chip permits high-fidelity recording of ion channel activity from functionally defined neurons, Biotechnol. Bioeng., 2010, vol. 107, no. 4, pp. 593–600.

    Article  CAS  PubMed  Google Scholar 

  • Py, C., Denhoff, M.W., Sabourin, N., Weber, J., Shiu, M., and Zhao, P., Priming and testing silicon patch-clamp neurochips, New Biotechnol., 2014, vol. 31, no. 5, pp. 430–435.

    Article  CAS  Google Scholar 

  • Rutten, W.L.C., Selective electrical interfaces with the nervous system, Annu. Rev. Biomed. Eng., 2002, vol. 4, pp. 407–452.

    Article  CAS  PubMed  Google Scholar 

  • Ruz, I.D. and Schulz, S.R., Localizing and classifying neurons from high density MEA recordings, J. Neurosci. Methods, 2014, vol. 233, pp. 115–128.

    Article  Google Scholar 

  • Sarpeshkar, R., Wattanapanitch, W., Arfin, S.K., et al., Low-power circuits for brain-machine interfaces, IEEE Trans. Biomed. Circuits Syst., 2008, vol. 2, no. 3, pp. 173–183.

    Article  PubMed  Google Scholar 

  • Schwartz, A.B., Cortical neural protheses, Annu. Rev. Neurosci., 2004, vol. 27, pp. 487–507.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, A.B., Weber, D.J., Cui, X.T., et al., Brain-controlled interfaces: movement restoration with neural prosthetics, Neuron, 2006, vol. 52, pp. 205–220.

    Article  CAS  PubMed  Google Scholar 

  • Seo, J., Ionescu-Zanetti, C., Diamond, J., Lal, R., and Lee, L.P., Integrated multiple patch-clamp array chip via lateral cell trapping junctions, Appl. Phys. Lett., 1973 (2004), vol. 84, p. 1973. doi: 10.1063/1.1650035.

    Article  CAS  Google Scholar 

  • Shoham, S., O’Connor D.H., Segev R., How silent is the brain: is there a “dark matter” problem in neuroscience?, J. Comp. Physiol. A, 2006, vol. 192, pp. 777–784.

    Article  Google Scholar 

  • Sodagar, A.M., Wise, K.D., and Najafi, K., A wireless implantable microsystem for multichannel neural recording, IEEE Trans. Microwave Theory Tech., 2009, vol. 57, no. 10, pp. 2565–2573.

    Article  Google Scholar 

  • Spitzer, N.C., Electrical activity in early neuronal development, Nature, 2006, vol. 444, no. 7120, pp. 1207–1214.

    Article  Google Scholar 

  • Urbanova, V., Li, Y., Vytras, K., et al., Macroporous microelectrode arrays for measurements with reduced noise, Electroanal. Chem. Interfacial Electrochem., 2011, vol. 656, pp. 91–95.

    CAS  Google Scholar 

  • Wattanapanitch, W., Fee, M.S., and Sarpeshkar, R., An energy-efficient micropower neural recording amplifier, IEEE Trans. Biomed. Circuits Syst., 2007, vol. 1, no. 2, pp. 136–147.

    Article  CAS  PubMed  Google Scholar 

  • Weiland, J.D. and Humayun, M.S., Visual prothesis, Proc. IEEE, 2008, vol. 96, no. 7, pp. 1076–1084.

    Article  Google Scholar 

  • Wise, K.D., Sodagar, A.M., Yao, Y., et al., Microelectrodes, microelectronics and implantable neural microsystems, Proc. IEEE, 2008, vol. 96, no. 7, pp. 1184–1202.

    Article  CAS  Google Scholar 

  • Xu, J., Guia, A., Rothwarf, D., Huang, M., Sithiphong, K., Ouang, J., Tao, G., Wang, X., and Wu, L., A benchmark study with sealchip planar patch-clamp technology, Assay Drug Dev. Technol., 2003, vol. 1, no. 5, pp. 675–684.

    Article  CAS  PubMed  Google Scholar 

  • Zemianek, J.M., Serra, M., Guaraldi, M., et al., Stimulation with a low-amplitude, digitized synaptic signal to invoke robust activity within neuronal network on multielectrode arrays, BioTechniques, 2012, vol. 52, no. 3, pp. 177–182.

    CAS  PubMed  Google Scholar 

  • Zeng, F.-G., Rebscher, S., Harrison, W., et al., Cochlear implants: system design, integration, and evolution, IEEE Rev. Biomed. Eng., 2008, vol. 1, pp. 115–142.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang, L., Dong, L., and Nelson, B.J., Bending and buckling of rolled-up SiGe/Si microtubes using nanorobotic manipulation, Appl. Phys. Lett., 2008, vol. 92, p. 243102.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Prinz.

Additional information

Original Russian Text © S.N. Rechkunov, A.V. Prinz, V.A. Seleznev, S.V. Golod, R.A. Soots, A.I. Ivanov, A.S. Ratushnyak, V.Ya. Prinz, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 4/3, pp. 1077–1089.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rechkunov, S.N., Prinz, A.V., Seleznev, V.A. et al. Neurointerfaces: Review and development. Russ J Genet Appl Res 5, 552–561 (2015). https://doi.org/10.1134/S2079059715060143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059715060143

Keywords

Navigation