Skip to main content
Log in

Molecular dating of intraspecific differentiation of stoats (Mustela erminea) based on the variability of the mitochondrial ND2 gene

  • Published:
Russian Journal of Genetics: Applied Research

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Nucleotide sequences of the NADH dehydrogenase subunit 2 gene (ND2) of mitochondrial DNA (mtDNA) were determined in stoats (Mustela ermine) from northeastern Kamchatka. Analysis of the ND2 variability in stoats, which is represented here and, also, in previous studies, shows that the divergence level between American and Eurasian mtDNA haplotypes is about 5%, whereas that among Eurasian ones is as low as 0.5%. The results of the phylogenetic analysis also indicate a highly significant differentiation between the American and Eurasian mtDNA lineages, whereas a single Kamchatkan cluster of mtDNA haplotypes is recognized in the Eurasian mtDNA clade with high confidence. Molecular dating shows that separation of the ancestral stoat population occurred approximately 1.3–1.6 million years ago, but the Eurasian mtDNA lineages diverged about 300 ka ago. The evolutionary age of Kamchatkan mtDNA haplotypes is about 95–120 ka, which contradicts other authors’ suggestions about the last postglacial (19–26.5 ka) recolonization of Eurasia by stoat populations. This inconsistency is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson, N.I., Phylogeography: results, problems, and prospects, Inform. Vestn. VOGi, vol. 11, no. 2, pp. 307–331.

  • Avise, J.C., Genetrees and organismal histories: a phylogenetic approach to the population biology, Evolution, 1989, vol. 43, pp. 1192–1208.

    Article  Google Scholar 

  • Clark, P.U., Dyke, A.S., Shakun, J.D., et al., Thelastglacial maximum, Science, 2009, vol. 325, pp. 710–714.

    Article  CAS  PubMed  Google Scholar 

  • Delisle, I. and Strobeck, C., A phylogeny of the Caniformia (order Carnivora) based on 12 complete protein-coding mitochondrial genes, Mol. Phylogenet. Evol., 2005, vol. 37, pp. 192–201.

    Article  CAS  PubMed  Google Scholar 

  • Domingo-Roura, X., Lopez-Giraldez, F., Saeki, M., and Marmi, J., Phylogenetic inference and comparative evolution of a complex microsatellite and its flanking regions in carnivores, Genet. Res., 2005, vol. 85, pp. 223–233.

    Article  CAS  PubMed  Google Scholar 

  • Drummond, A.J. Suchard, M.A., Xie, D., et al., Bayesian phylogenetics with BEAUti and the BEAST1.7, Mol. Biol. Evol., 2012, vol. 29, pp. 1969–1973.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finnila, S., Lehtonen, M.S., and Majamaa, K., Phylogenetic network for European mtDNA, Am. J. Hum. Genet., 2001, vol. 68, pp. 1475–1484.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fleming, M.A. and Cook, J.A., Phylogeography of endemic ermine (Mustela erminea) in southeast Alaska, Mol. Ecol., 2002, vol. 11, pp. 795–807.

    Article  CAS  PubMed  Google Scholar 

  • Flynn, J.J., Finarelli, J.A., Zehr, S., et al., Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships, Syst. Biol., 2005, vol. 54, pp. 317–337.

    Article  PubMed  Google Scholar 

  • Fulton, T.L. and Strobeck, C., Novel phylogeny of the raccoon family (Procyonidae: Carnivora) based on nuclear and mitochondrial DNA evidence, Mol. Phylogenet. Evol., 2007, vol. 43, pp. 1171–1177.

    Article  CAS  PubMed  Google Scholar 

  • Grafodatskii, A.C., Volobuev, V.T., Ternovskii, D.V., and Radzhabli, S.I., G-banding of chromosomes of seven species of Mustelidae (Carnivora, Mustelidae), Zool. Zh., 1976, vol. 55, no. 11, pp. 1704–1709.

    Google Scholar 

  • Harding, L.E. and Smith, F.A., Mustela or Vison? Evidence for the taxonomic status of the American mink and a distinct biogeographic radiation of American weasels, Mol. Phylogenet. Evol., 2009, vol. 52, pp. 632–642.

    Article  CAS  PubMed  Google Scholar 

  • Hosoda, T., Satoj, J., Shimada, K.L., et al., Independent nonframeshift deletions in the MC1R gene are not associated with melanistic coat coloration in three mustelid lineages, J. Hered., 2005, vol. 96, pp. 607–613.

    Article  CAS  PubMed  Google Scholar 

  • Hosoda, T., Sato, J.J., Lin, L.-K., et al., Phylogenetic history of mustelid fauna in Taiwan inferred from mitochondrial genetic loci, Can. J. Zool., 2011, vol. 89, pp. 559–569.

    Article  Google Scholar 

  • Irwin, D.E., Phylogeographic breaks without geographic barriers to gene flow, Evolution, 2002, vol. 56, pp. 2383–2394.

    Article  PubMed  Google Scholar 

  • King, C.M., Mustela erminea, Mammal Sp., 1983, vol. 195, pp. 1–8.

    Article  Google Scholar 

  • Koepfli, K.-P. and Wayner, K., Phylogenetic relationships of otters (Carnivora: Mustelidae) based on mitochondrial cytochrome b sequences, J. Zool., 1998, vol. 246, pp. 401–416.

    Article  Google Scholar 

  • Koepfli, K.-P., Deerek, A., Slater, G.J., et al., Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation, BMC Biol., 2008, vol. 6, p. 10.

  • Kurose, N., Abramov, A.V., and Masuda, R., Comparative phylogeography between the ermine Mustela ermine and the least weasel M. nivalis of Palaearctic and Nearctic regions, based on analysis of mitochondrial DNA control region sequences, Zool. Sci., 2005, vol. 22, pp. 1069–1078.

    Article  CAS  PubMed  Google Scholar 

  • Kurten, B. and Anderson, E., Pleistocene Mammals of North America, New York: Columbia Univ. Press, 1980.

    Google Scholar 

  • Li, B., Malyarchuk, B., Ma, Z., et al., Phylogeography of sable (Martes zibellina L. 1758) in the southeast portion of its range based on mitochondrial DNA variation: highlighting the evolutionary history of the sable, Acta Theriol., 2013, vol. 58, pp. 139–148.

    Article  Google Scholar 

  • Lushnikova, T.P., Omelyanchuk, L.V., and Grafodatskii, A.C., Phylogenetic relations of closely related species of Mustelidae. Interspecies variability of localization of restriction sites of BamHI-repeats, Genetika, 1989, vol. 25, no. 6, pp. 1089–1094.

    CAS  PubMed  Google Scholar 

  • Malyarchuk, B.A., Rogozin, I.B., Berikov, V.B., and Derenko, M.V., Analysis of phylogenetically reconstructed mutational spectra in human mitochondrial DNA control region, Hum. Genet., 2002, vol. 111, pp. 46–53.

    Article  CAS  PubMed  Google Scholar 

  • Malyarchuk, B.A., Adaptive intraspecific divergence: an example using the animal cytochrome b gene, Russ. J. Genet., 2011, vol. 47, no. 8, pp. 979–986.

    Article  CAS  Google Scholar 

  • Martinkova, N., McDonald, R.A., and Searle, J.B., Stoats (Mustela erminea) provide evidence of natural overland colonization of Ireland, Proc. R. Soc. B, 2007, vol. 274, pp. 1387–1393.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pavlinov, I.Ya., Priroda Rossii: zhizn’ zhivotnykh. Mlekopitayushchie (chast’ 1) (Nature of Russia: The Lives of Animals. Mammals (Part 1)), Moscow: AST, 1999.

    Google Scholar 

  • Rogozin, I.B., Glazko, V.I., and Kunin, E.V., The molecular basis of the law of homological rows of variability by N.I. Vavilov, Inform. Vestn. VOGiS, 2008, vol. 12, no. 3, pp. 362–371.

    Google Scholar 

  • Rozhnov, V.V., Meshchersky, I.G., Pishchulina, S.L., et al., Genetic analysis of sable (Martes zibellina) and pine marten (M. martes) populations in sympatric part of distribution area in the Northern Urals, Russ. J. Genet., 2010, vol. 46, no. 4, pp. 488–492.

    Article  CAS  Google Scholar 

  • Rozhnov, V.V., Pishchulina, S.L., Meshchersky, I.G., et al., Genetic structure of sable (Martes zibellina L.) in Eurasia—analysis of the mitochondrial lineages distribution, Russ. J. Genet., 2013, vol. 49, no. 2, pp. 220–227.

    Article  CAS  Google Scholar 

  • Sato, J.J., Yasuda, S.P., and Hosoda, T., Genetic diversity of the Japanese marten (Martes melampus) and its implications for the conservation unit, Zool. Sci., 2009, vol. 26, pp. 457–466.

    Article  CAS  PubMed  Google Scholar 

  • Sato, J.J., Hosoda, T., Kryukov, A.P., et al., Genetic diversity of the sable (Martes zibellina, Mustelidae) in Russian Far East and Hokkaido inferred from mitochondrial NADH dehydrogenase subunit 2 gene sequences, Mamm. Stud., 2011, vol. 36, pp. 209–222.

    Article  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu, C.Z., Zhang, H.H., Ma, J.Z., et al., The complete mitochondrial genomeofsable, Martes zibellina, Mitochondrial DNA, 2012. vol. 23, pp. 167–169

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Malyarchuk.

Additional information

Original Russian Text © B.A. Malyarchuk, G.A. Denisova, M.V. Derenko, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 3, pp. 456–462.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyarchuk, B.A., Denisova, G.A. & Derenko, M.V. Molecular dating of intraspecific differentiation of stoats (Mustela erminea) based on the variability of the mitochondrial ND2 gene. Russ J Genet Appl Res 5, 16–20 (2015). https://doi.org/10.1134/S2079059715010074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059715010074

Keywords

Navigation