Skip to main content
Log in

Regulatory transcription factors can control the process of transcription at the stage of pre-mRNA elongation

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Sequence-specific (regulatory) transcription factors are the proteins that recognize certain DNA sequences. They selectively regulate transcription levels of different sets of genes depending on the ontogeny stage, cell type, and external conditions. According to the established opinion, these proteins control the process of transcription at the stage of the RNA Pol II preinitiation complex assembly. However, according to the growing body of evidence, regulatory transcription factors can be also involved in the control of transcription elongation. This review focuses on systematization of such data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barboric, M., Nissen, R.M., Kanazawa, S., et al., NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II, Mol. Cell, 2001, vol. 8, pp. 327–337.

    Article  CAS  PubMed  Google Scholar 

  • Bender, T.P., Thompson, C.B., and Kuehl, W.M., Differential expression of c-myb mRNA in murine B lymphomas by a block to transcription elongation, Science, 1987, vol. 237, pp. 1473–1476.

    Article  CAS  PubMed  Google Scholar 

  • Bottardi, S., Zmiri, F.A., Bourgoin, V., et al., Ikaros interacts with P-TEFb and cooperates with GATA-1 to enhance transcription elongation, Nucleic Acids Res., 2011, vol. 39, pp. 3505–3519.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buganim, Y., Faddah, D.A., and Jaenisch, R., Mechanisms and models of somatic cell reprogramming, Nat. Rev. Genet., 2013, vol. 14, pp. 427–439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charoensawan, V., Wilson, D., and Teichmann, S.A., Genomic repertoires of DNA-binding transcription factors across the tree of life, Nucleic Acids Res., 2010, vol. 38, pp. 7364–7377.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, Y., Yamaguchi, Y., Tsugeno, Y., et al., DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation, Genes Dev., 2009, vol. 23, pp. 2765–2777.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeLaForest, A., Nagaoka, M. Si-Tayeb, K., et al., HNF4A is essential for specification of hepatic progenitors from human pluripotent stem cells, Development, 2011, vol. 138, pp. 4143–4153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dey, A., Chao, S.H., and Lane, D.P., HEXIM1 and the control of transcription elongation: from cancer and inflammation to AIDS and cardiac hypertrophy, Cell Cycle, 2007, vol. 6, pp. 1856–1863.

    Article  CAS  PubMed  Google Scholar 

  • Diamant, G. and Dikstein, R., Transcriptional control by NF-κB: elongation in focus, Biochim. Biophys. Acta, 2013, vol. 1829, pp. 937–945.

    Article  CAS  PubMed  Google Scholar 

  • Eberhardy, S.R. and Farnham, P.J., c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism, J. Biol. Chem., 2001, vol. 276, pp. 48562–48571.

    CAS  PubMed  Google Scholar 

  • Eberhardy, S.R. and Farnham, P.J., Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter, J. Biol. Chem., 2002, vol. 277, pp. 40156–40162.

    Article  CAS  PubMed  Google Scholar 

  • Egloff, S., Szczepaniak, S.A., Dienstbier, M., et al., The integrator complex recognizes a new double mark on the RNA polymerase II carboxyl-terminal domain, J. Biol. Chem., 2010, vol. 285, pp. 20564–20569.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuda, N.J., Ardehali, M.B., and Lis, J.T., Defining mechanisms that regulate RNA polymerase II transcription in vivo, Nature, 2009, vol. 461, pp. 186–192.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuda, N.J. and Lis, J.T., A new player in Pol II pausing, EMBO J., 2013, vol. 32, pp. 1796–1808.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glover-Cutter, K., Kim, S., Espinosa, J., and Bentley, D.L., RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes, Nat. Struct. Mol. Biol, 2008, vol. 15, pp. 71–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guenther, M.G., Levine, S.S., Boyer, L.A., et al., A chromatin landmark and transcription initiation at most promoters in human cells, Cell, 2007, vol. 130, pp. 77–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guertin, M.J. and Lis, J.T., Chromatin landscape dictates HSF binding to target DNA elements, PLoS Genet., 2010, vol. 6, p. e1001114.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hochheimer, A. and Tjian, R., Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression, Genes Dev., 2003, vol. 17, pp. 1309–1320.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, H., Zhang, F., Kurosu, T., and Peterlin, B.M., Runx1 binds positive transcription elongation factor b and represses transcriptional elongation by RNA polymerase II: possible mechanism of CD4 silencing, Mol. Cell. Biol., 2005, vol. 25, pp. 10675–10683.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juven-Gershon, T. and Kadonaga, J.T., Regulation of gene expression via the core promoter and the basal transcriptional machinery, Dev. Biol., 2010, vol. 339, pp. 225–229.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keys, J.R., Tallack, M.R., Zhan, Y., et al., A mechanism for Ikaros regulation of human globin gene switching, Br. J. Haematol., 2008, vol. 141, pp. 398–406.

    CAS  PubMed  Google Scholar 

  • Kim, S.I., Bultman, S.J., and Kiefer, C.M., BRG1 requirement for long-range interaction of a locus control region with a downstream promoter, Proc. Natl. Acad. Sci. USA, 2009, vol. 106, pp. 2259–2264.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwak, H., Fuda, N.J., Core, L.J., and Lis, J.T., Precise maps of RNA polymerase reveal how promoters direct initiation and pausing, Science, 2013, vol. 339, pp. 950–953.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, D.K., Duan, H.O., and Chang, C., Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation, J. Biol. Chem., 2001, vol. 27, pp. 9978–9984.

    Article  Google Scholar 

  • Lenasi, T. and Barboric, M., P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms, RNA Biol., 2010, vol. 7, pp. 145–150.

    Article  CAS  PubMed  Google Scholar 

  • Lis, J.T., Mason, P., Peng, J., et al., P-TEFb kinase recruitment and function at heat shock loci, Genes Dev., 2000, vol. 14, pp. 792–803.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lüscher, B. and Vervoorts, J., Regulation of gene transcription by the oncoprotein MYC, Gene, 2012, vol. 494, pp. 145–160.

    Article  PubMed  Google Scholar 

  • Mahajan, M.C., Karmakar, S., and Weissman, S., Control of beta globin genes, J. Cell Biochem., 2007, vol. 102, pp. 801–810.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, S.S., Chu, C., Wada, T., et al., Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II, Proc. Natl. Acad. Sci. U.S.A., 2004, vol. 101, pp. 7572–7577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Markova, E.N., Petrova, N.V., Razin, S.V., and Kantidze, O.L., Transcription factor RUNX1, Mol. Biol. (Moscow), 2012, vol. 46, no. 6, pp. 755–767.

    Article  CAS  Google Scholar 

  • Merkulova, T.I., Anan’ko, E.A., Ignat’eva, E.V., and Kolchanov, N.A., Transcription regulatory codes of eukaryotic genomes, Russ. J. Genet., 2013, vol. 49, no. 1, pp. 29–45.

    Article  CAS  Google Scholar 

  • Miltenberger, R.J., Sukow, K.A., and Farnham, P.J., An E-box-mediated increase in cad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants, Mol. Cell. Biol., 1995, vol. 15, pp. 2527–2535.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Min, I.M., Waterfall, J.J., Core, L.J., et al., Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells, Genes Dev., 2011, vol. 25, pp. 742–754.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitra, P., Pereira, L.A., Drabsch, Y., et al., Estrogen receptor-αrecruits P-TEFb to overcome transcriptional pausing in intron 1 of the MYB gene, Nucleic Acids Res., 2012, vol. 40, pp. 5988–6000.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nechaev, S. and Adelman, K., Pol II waiting in the starting gates: Regulating the transition from transcription initiation into productive elongation, Biochim. Biophys. Acta, 2011, vol. 1809, pp. 34–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nissen, R.M. and Yamamoto, K.R., The glucocorticoid receptor inhibits NFkappaB by interfering with serine-2 phosphorylation of the RNA polymerase II carboxyterminal domain, Genes Dev., 2000, vol. 14, pp. 2314–2329.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nowak, D.E., Tian, B., Jamaluddin, M., et al., RelA Ser276 phosphorylation is required for activation of a subset of NF-kappaB-dependent genes by recruiting cyclin-dependent kinase 9/cyclin T1 complexes, Mol. Cell. Biol., 2008, vol. 28, pp. 3623–3638.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osmanbeyoglu, H.U., Lu, K.N., Oesterreich, S., et al., Estrogen represses gene expression through reconfiguring chromatin structures, Nucleic Acids Res., 2013, vol. 41, pp. 8061–8071.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oven, I., Brdickova, N., Kohoutek, J., et al., AIRE recruits P-TEFb for transcriptional elongation of target genes in medullary thymic epithelial cells, Mol. Cell. Biol., 2007, vol. 27, pp. 8815–8823.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peterlin, B.M. and Price, D.H., Controlling the elongation phase of transcription with P-TEFb, Mol. Cell, 2006, vol. 23, pp. 297–305.

    Article  CAS  PubMed  Google Scholar 

  • Poss, Z.C., Ebmeier, C.C., and Taatjes, D.J., The mediator complex and transcription regulation, Crit. Rev. Biochem. Mol. Biol., 2013.

    Google Scholar 

  • Rahl, P.B., Lin, C.Y., Seila, A.C., et al., C-myc regulates transcriptional pause release, Cell, 2010, vol. 141, pp. 432–445.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roeder, R.G., Transcriptional regulation and the role of diverse coactivators in animal cells, FEBS Lett., 2005, vol. 579, pp. 909–915.

    Article  CAS  PubMed  Google Scholar 

  • Saunders, A., Core, L.J., Sutcliffe, C., et al., Extensive polymerase pausing during Drosophila axis patterning enables high-level and pliable transcription, Genes Dev., 2013, vol. 27, pp. 1146–1158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sawada, S., Scarborough, J.D., Killeen, N., and Littman, D.R., A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development, Cell, 1994, vol. 77, pp. 917–929.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, M., George, A.A., Singh, B.N., et al., Regulation of transcript elongation through cooperative and ordered recruitment of cofactors, J. Biol. Chem., 2007, vol. 282, pp. 20887–20896.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, vol. 126, pp. 663–676.

    Article  CAS  PubMed  Google Scholar 

  • Taniuchi, I., Osato, M., Egawa, T., et al., Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development, Cell, 2002, vol. 111, pp. 621–633.

    Article  CAS  PubMed  Google Scholar 

  • Taube, R., Lin, X., Irwin, D., et al., Interaction between P-TEFb and the C-terminal domain of RNA polymerase ii activates transcriptional elongation from sites upstream or downstream of target genes, Mol. Cell Biol., 2002, vol. 22, pp. 321–331.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson, M.A., Flegg, R., Westin, E.H., and Ramsay, R.G., Microsatellite deletions in the c-myb transcriptional attenuator region associated with over-expression in colon tumour cell lines, Oncogene, 1997, vol. 14, pp. 1715–1723.

    Article  CAS  PubMed  Google Scholar 

  • Trotter, K.W. and Archer, T.K., The BRG1 transcriptional coregulator, Nucl. Recept. Signal, 2008, vol. 6, p. e004.

    PubMed Central  PubMed  Google Scholar 

  • Vaquerizas, J.M., Kummerfeld, S.K., Teichmann, S.A., and Luscombe, N.M., A census of human transcription factors: function, expression and evolution, Nat. Rev. Genet., 2009, vol. 10, pp. 252–263.

    Article  CAS  PubMed  Google Scholar 

  • Watson, R.J., A transcriptional arrest mechanism involved in controlling constitutive levels of mouse c-myc mRNA, Oncogene, 1988, vol. 2, pp. 267–272.

    CAS  PubMed  Google Scholar 

  • Wernig, M., Meissner, A., Foreman, R., et al., In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state, Nature, 2007, vol. 448, pp. 318–324.

    Article  CAS  PubMed  Google Scholar 

  • White, U.A. and Stephens, J.M., Transcriptional factors that promote formation of white adipose tissue, Mol. Cell. Endocrinol., 2010, vol. 318, pp. 10–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wittmann, B.M., Fujinaga, K., Deng, H., Ogba, N., and Montano, M.M., The breast cell growth inhibitor, estrogen down regulated gene 1, modulates a novel functional interaction between estrogen receptor alpha and transcriptional elongation factor cyclin T1, Oncogene, 2005, vol. 24, pp. 5576–5588.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, Y., Shibata, H., and Handa, H., Transcription elongation factors DSIF and NELF: promoter-proximal pausing and beyond, Biochim. Biophys. Acta, 2013, vol. 1829, pp. 98–104.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H.M., Chen, H., Liu, W., et al., Animal TFDB: a comprehensive animal transcription factor database, Nucleic Acids Res., 2012, vol. 40, pp. D144–D149.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, D. and Glass, C., Towards an under standing of cell-specific functions of signal-dependent transcription factors, J. Mol. Endocrinol., 2013.

    Google Scholar 

  • Zhong, H., Voll, R.E., and Ghosh, S Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300, Mol. Cell, 1998, vol. 1, pp. 661–671.

    Article  CAS  PubMed  Google Scholar 

  • Zumer, K., Saksela, K., and Peterlin, B.M., The mechanism of tissue-restricted antigen gene expression by AIRE, J. Immunol., 2013, vol. 190, pp. 2479–2482.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Merkulova.

Additional information

Original Russian Text © V.M. Merkulov, T.I. Merkulova, 2014, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2014, Vol. 18, No. 2, pp. 329–337.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkulov, V.M., Merkulova, T.I. Regulatory transcription factors can control the process of transcription at the stage of pre-mRNA elongation. Russ J Genet Appl Res 4, 549–555 (2014). https://doi.org/10.1134/S2079059714060124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059714060124

Keywords

Navigation