Skip to main content
Log in

Effect of high temperature on survival of Drosophila melanogaster infected with pathogenic strain of Wolbachia bacteria

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The pathogenic Wolbachia strain wMelPop is detected in the central nervous system, muscles, and retina of Drosophila melanogaster. It reduces the host lifespan by a factor of two. This fact makes it promising for the control of insect pests and vectors of human diseases. Any symbiotic association is exposed to various stress factors: starvation, heat, cold and etc., which affect the symbiont interaction significantly. This study considers the influence of low (16°C) and high (29°C) temperature on the survival and lifespan of D. melanogaster females infected with the Wolbachia strain wMelPop. The ultrastructure of brain cells and distribution of the bacteria in this cells were studied. On day 7 of exposure to high temperature, electron-dense bodies occur in brain cells of the flies, resembling degrading bacteria. The amount of these bodies increases dramatically by day 13 of incubation at 29°C. On the basis of population and EM analysis, we identified the critical period (7–13 days) of high temperature influence, which dramatically decreases the survival of D. melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bordenstein, S.R. and Bordenstein, S.R., Temperature affects the tripartite interactions between bacteriophage WO, Wolbachia, and cytoplasmic incompatibility, PLoS One, 2011, vol. 6, p. e29106.

    Article  CAS  Google Scholar 

  • Breeuwer, J.A.J., High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbiont, from the two-spotted spider mite, Exp. Appl. Acarol., 1999, vol. 23, pp. 871–881.

    Article  PubMed  Google Scholar 

  • Chapman, R.F. and Page, W.W., Factors affecting the mortality of the grasshopper, Zonocerus variegates, in southern Nigeria, Okeanologiya, 1979, vol. 48, pp. 271–288.

    Google Scholar 

  • Clark, M.E., Anderson, C., Cande, J., and Karr, T.L., Widespread prevalence of Wolbachia in laboratory stocks and the implications for Drosophila research, Genetics, 2005, vol. 170, pp. 1667–1675.

    Article  PubMed  Google Scholar 

  • Cossins, A. and Bowler, K., Temperature Biology of Animals, London: Chapman and Hall, 1987.

    Book  Google Scholar 

  • Dobson, S.L., Bourtzis, K., Braig, H.R., et al., Wolbachia infections are distributed throughout insect somatic and germ line tissues, Insect. Biochem. Mol. Biol., 1999, vol. 29, pp. 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, S.F. and Burgdorfer, W., Reactivation of Rickettsia rickettsii in Dermacentor andersoni ticks: an ultrastructural analysis, Infect. Immun., 1982, vol. 37, pp. 779–785.

    PubMed  CAS  Google Scholar 

  • Kushner, D.J., Microbial Life in Extreme Environments, London: Academic Press, 1978.

    Google Scholar 

  • Kozek, W.J., What is new in the Wolbachia/Diroflaria interaction?, Vet. Parasitol., 2005, vol. 133, pp. 127–132.

    Article  PubMed  Google Scholar 

  • Loesel, R., Nässel, D.R., and Strausfeld, N.J., Common design in a unique midline neuropil in the brains of arthropods, Arthropod Struct. Dev., 2002, vol. 31, pp. 77–91.

    Article  PubMed  Google Scholar 

  • McGraw, E.A., Merritt, D.J., Droller, J.N., and O’Neill, S.L., Wolbachia density and virulence attenuation after transfer into a novel host, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 2918–2923.

    Article  PubMed  CAS  Google Scholar 

  • McMeniman, C.J., Lane, R.V., Cass, B.N., et al., Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti, Science, 2009, vol. 323, pp. 141–144.

    Article  PubMed  CAS  Google Scholar 

  • Min, K.T. and Benzer, S., Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 10792–10796.

    Article  PubMed  CAS  Google Scholar 

  • Moreira, L.A., Iturbe-Ormaetxe, I., Jeffery, J.A., et al., A Wolbachia symbiont in Aedes aegypti limits infection with Dengue, Chikungunya, and Plasmodium, Cell, 2009, vol. 139, pp. 1268–1278.

    Article  PubMed  Google Scholar 

  • Petavy, G., David, J.R., and Gilbert, P., Viability and rate of development at different temperatures in Drosophila: a comparison of constant and alternating thermal regimes, J. Therm. Biol., 2001, vol. 26, pp. 29–39.

    Article  PubMed  Google Scholar 

  • Pizzol, J. and Bolland, P., Effects of endosymbiotic Wolbachia on the diapause in Trichogramma hosts and effects of the diapause on Wolbachia, Entomol. Exp. Appl., 2003, vol. 106, pp. 193–200.

    Article  Google Scholar 

  • Precht, H.J., Christophersen, H., Hensel, H., and Larcher, W., Temperature and Life, Berlin: Springer-Verlag, 1973.

    Book  Google Scholar 

  • Rasgon, J.L., Gamston, C.E., and Ren, X., Survival of Wolbachia pipientis in cell-free medium, Appl. Environ. Microbiol., 2006, vol. 72, pp. 6934–6937.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, E.S., The use of lead citrate at high ph as an electron-opaque stain for electron microscopy, J. Cell Biol., 1963, vol. 17, pp. 208–212.

    Article  PubMed  CAS  Google Scholar 

  • Serbus, L.R., Casper-Lindley, C., Landmann, F., and Sullivan, W., The genetics and cell biology of Wolbachia-host interactions, Ann. Rev. Genet., 2008, vol. 42, pp. 683–707.

    Article  PubMed  CAS  Google Scholar 

  • Terasaki, M., Runft, L.L., and Hand, A.R., Changes in organization of the endoplasmic reticulum during Xenopus oocyte maturation and activation, Mol. Biol. Cell, 2001, vol. 12, pp. 1103–1116.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, M.B. and Blanford, S., Thermal biology in insectparasite interactions, Trends Ecol. Evol., 2003, vol. 18, no. 7, pp. 344–350.

    Article  Google Scholar 

  • van Opijnen, T.V. and Breeuwer, J.A.J., High temperatures eliminate Wolbachia, a cytoplasmic incompatibility inducing endosymbions, from the two-spotted mite, Exp. App. Acarol., 1999, vol. 23, pp. 871–881.

    Article  Google Scholar 

  • Weisman, N.Ya., Ilinskii, Yu.Yu., and Golubovskii, M.D., Population-genetic analysis of lifespan of Drosophila melanogaster: similar effects of the endosymbiont Wolbachia and the oncosuppressor lgl under temperature stress, Zh. Obshch. Biol., 2009, vol. 70, no. 5, pp. 438–447.

    Google Scholar 

  • Wiwatanaratanabutr, I. and Kittayapong, P., Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus, J. Invertebr. Pathol., 2009, vol. 102, pp. 220–224.

    Article  PubMed  Google Scholar 

  • Zhukova, M.V., Voronin, D.A., and Kiseleva, E.V., High temperature initiates changes in Wolbachia ultrastructure in ovaries and early embryos of Drosophila melanogaster, Cell Tissue Biol., 2008, vol. 2, no. 5, pp. 546–556.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Strunov.

Additional information

Original Russian Text © A.A. Strunov, Yu.Yu. Ilinskii, I.K. Zakharov, E.V. Kiseleva, 2013, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2013, Vol. 17, No. 2, pp. 265–276.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strunov, A.A., Ilinskii, Y.Y., Zakharov, I.K. et al. Effect of high temperature on survival of Drosophila melanogaster infected with pathogenic strain of Wolbachia bacteria. Russ J Genet Appl Res 3, 435–443 (2013). https://doi.org/10.1134/S2079059713060099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059713060099

Keywords

Navigation