Skip to main content
Log in

Temporal order deterioration and circadian disruption with age 1. Central and peripheral mechanisms

  • Published:
Advances in Gerontology Aims and scope Submit manuscript

Abstract

The review presents recent data on the mechanisms of temporal dynamics of aging processes. The general principle of changes in multioscillatory network of phenotypic functions in the form of extracircadian dissemination has been described: the frequency transposition of variability in ultra- and infradian ranges accompanied by the loss of phase stability of the circadian rhythm. Heterochronic molecular, genetic, morphological, and functional changes of the central oscillator and the cells of the peripheral tissues were analyzed. Age-dependent circadian disruption is considered as a result of gradual nonspecific loss of molecular, genetic, tissue, and systemic factors synchronizing the circadian rhythm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agadzhanyan, N.A. and Gubin, D.G., Circadian disruption: mechanisms of development from molecularto systemic level, Usp. Fiziol. Nauk, 2004, vol. 35, no. 2, pp. 57–72.

    Google Scholar 

  2. Anisimov, V.N., Molekulyarnye i fiziologicheskie mekhanizmy stareniya (Molecular and Physiological Mechanisms of Aging), St. Petersburg: Nauka, 2008.

    Google Scholar 

  3. Anisimov, V.N., Epiphysis, biorhythms, and aging of organism, Usp. Fiziol. Nauk, 2008, vol. 9, no. 4, pp. 52–76.

    Google Scholar 

  4. Anisimov, V.N., Vinogradova, I.A., Bukalev, A.V., et al., Light circadian disruption and risk of malignant neoplasms in man: status problems, Vopr. Onkol., 2013, no. 3, pp. 302–313.

    Google Scholar 

  5. Borisenkov, M.F., Human chronotypes in the North, Hum. Physiol., 2010, vol. 36, no. 3, pp. 348–352.

    Article  Google Scholar 

  6. Gubin, G.D., Circadian organization of biological processes in phyloand ontogenesis of vertebrates, in Khronobiologiya i khronomeditsina (Chronobiology and Chronomedicine), Moscow: Meditsina, 1989, pp. 70–82.

    Google Scholar 

  7. Gubin, D.G., Molecular Basis of Circadian Rhythms and Principles of Circadian Disruption, Usp. Fiziol. Nauk, 2013, vol. 44, no. 4, pp. 65–87.

    CAS  PubMed  Google Scholar 

  8. Gubin, G.D. and Weinert, D., Biorhythms and age, Usp. Fiziol. Nauk, 1991, vol. 22, pp. 77–96.

    CAS  PubMed  Google Scholar 

  9. Gubin, G.D. and Gerlovin, A.Sh., Sutochnye ritmy biologicheskikh protsessov i ikh adaptivnoe znachenie v ontoi filogeneze pozvonochnykh (Diurnal Rhythms of Biological Processes and Their Adaptive Role in Ontoand Phylogenesis of Vertebrates), Novosibirsk: Nauka, 1980.

    Google Scholar 

  10. Gubin, D.G. and Chibisov, S.M., About the problem of changes of the time zone and shift to the daylight saving time in Russia, Mezhd. Zh. Prikl. Fundam. Issled., 2010, no. 2, pp. 64–68.

    Google Scholar 

  11. Gubin, G.D., Gubin, D.G., and Komarov, P.I., Aging in terms of time organization of biological systems, Usp. Gerontol., 1998, vol. 2, pp. 67–73.

    Google Scholar 

  12. Gubin, G.D., Gubin, D.G., Rybina, S.V., and Rybak, A.V., Structure of individual biorhythms of rat rectal temperature in norm and during starvation, Byull. Eksp. Biol., 1994, vol. 117, no. 6, pp. 656–657.

    Article  CAS  Google Scholar 

  13. Chibisov, S.M., Katinas, G.S., and Ragul’skaya, M.V., Bioritmy i kosmos: monitoring kosmobiosfernykh svyazei (Biorhythms and Space: Monitoring of Space-Biospheric Relations), Moscow: Monografiya, 2013.

    Google Scholar 

  14. Anisimov, V.N., Effects of exogenous melatonin—a review, Toxicol. Pathol., 2003, vol. 31, no. 6, pp. 589–603.

    CAS  PubMed  Google Scholar 

  15. Archer, S.N., Laing, E.E., Moller-Levet, C.S., et al., Mistimed sleep disrupts circadian regulation of the human transcriptome, Proc. Natl. Acad. Sci. U.S.A., 2014. doi: 10.1073/pnas.1316335111

    Google Scholar 

  16. Aschoff, J. and Weaver, R., Human circadian rhythms: a multioscillatory system, Fed. Proc., 1976, vol. 35, pp. 2326–2332.

    CAS  Google Scholar 

  17. Bass, J. and Takahashi, J.B., Circadian integration of metabolism and energetics, Science, 2010, vol. 330, no. 6009, pp. 1349–1354.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Brown, S.A., Schmitt, K., and Eckert, A., Aging and circadian disruption: causes and effects, Aging, 2011, vol. 3, no. 8, pp. 1–5.

    Google Scholar 

  19. Carcangiu, V., Mura, M.C., Parmeggiani, A., et al., Daily rhythm of blood melatonin concentrations in sheep of different ages, Biol. Rhythm Res., 2013, vol. 44, no. 6. doi: 10.1080/09291016.2013.781317

    Google Scholar 

  20. Cretenet, G., Le Clech, M., and Gachon, F., Circadian clock-coordinated 12 hr period rhythmic activation of the ire1 pathway controls lipid metabolism in mouse liver, Cell Metab., 2010, vol. 11, pp. 47–57.

    Article  CAS  PubMed  Google Scholar 

  21. Dibner, C., Schibler, U., and Albrecht, U., The mammalian circadian timing system: organization and coordination of central and peripheral clocks, Ann. Rev. Physiol., 2010, vol. 72, pp. 517–549.

    Article  CAS  Google Scholar 

  22. Dubrovsky, Y.V., Samsa, W.E., and Kondratov, R.V., Deficiency of circadian protein CLOCK reduces lifespan and increases age-related cataract development in mice, Aging, 2010, vol. 2, pp. 936–944.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Duncan, M.J., Prochot, J.R., Cook, D.H., et al., Influence of aging on Bmal1 and Per2 expression in extraSCN oscillators in hamster brain, Brain Res., 2013, vol. 1491, pp. 44–53.

    Article  CAS  PubMed  Google Scholar 

  24. Egli, M., Bertram, R., Sellix, M.T., and Freeman, M.E., Rhythmic secretion of prolactin in rats: action of oxytocin coordinated by vasoactive intestinal polypeptide of suprachiasmatic nucleus origin, Endocrinology, 2004, vol. 145, pp. 3386–3394.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Erren, T.C. and Morfeld, P., Shift work and cancer research: a thought experiment into a potential chronobiological fallacy of past and perspectives for future epidemiological studies, Neuroendocrinol. Lett., 2013, vol. 34, no. 4, pp. 282–286.

    PubMed  Google Scholar 

  26. Farajnia, S., Deboer, T., Rohling, J.H.T., et al., Aging of the suprachiasmatic clock, Neuroscientist, 2013. doi: 10.1177/1073858413498936

    Google Scholar 

  27. Farajnia, S., Michel, S., Deboer, T., et al., Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock, J. Neurosci., 2012, vol. 32, pp. 5891–5899.

    Article  CAS  PubMed  Google Scholar 

  28. Froy, O. and Miskin, R., Effect of feedings on circadian rhythms: implications for aging and longevity, Aging, 2010, vol. 2, no. 1, pp. 7–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Gerard, C. and Novak, B., microRNA as a potential vector for the propagation of robustness in protein expression and oscillatory dynamics within a ceRNA network, PLoS One, 2013, vol. 8, no. 12, p. e83372. doi: 10.1371/journalpone.0083372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Gibson, E.M., Williams, W.P. III, and Kriegsfeld, L.J., Aging in the circadian system: considerations for health, disease prevention and longevity, Exp. Gerontol., 2009, vol. 44, pp. 51–56.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Gossan, N., Boot-Handford, R., and Meng, Q.-J., Ageing and osteoarthritis: a circadian rhythm connection, Biogerontology, 2014. doi: 10.1007/s10522-0149522-3

    Google Scholar 

  32. Gubin, D. and Gubin, G., A circadian to extra-circadian variance transposition of human body temperature with advancing age, Chronobiol. Int., 1999, vol. 16, p. 41.

    Google Scholar 

  33. Gubin, D. and Gubin, G., Some general effects of aging upon circadian parameters of cardiovascular variables assessed longitudinally by ambulatory monitoring, Chronobiol. Int., 2001, vol. 18, p. 1106.

    Google Scholar 

  34. Gubin, D.G., Gubin, G.D., Waterhouse, J., and Weinert, D., The circadian body temperature rhythm in the elderly. Effect of single daily melatonin doses, Chronobiol. Int., 2006, vol. 23, pp. 639–658.

    Article  CAS  PubMed  Google Scholar 

  35. Gubin, D., Cornelissen, G., Halberg, F., et al., Halfweekly and weekly blood pressure patterns in late human ontogeny, Scripta Med., 1997, vol. 70, pp. 207–216.

    Google Scholar 

  36. Gubin, D., Cornelissen, G., Weinert, D., et al., Circadian disruption and Vascular Variability Disorders (VVD)—mechanisms linking aging, disease state and Arctic shift-work: applications for chronotherapy, World Heart J., 2013, vol. 5, no. 4, pp. 285–306.

    Google Scholar 

  37. Gubin, D., Gubin, G., Cornelissen, G., et al., The human blood pressure chronome: a biological gauge of aging, In Vivo, 1997, vol. 11, no. 6, pp. 485–494.

    CAS  PubMed  Google Scholar 

  38. Gutman, R., Genzer, Y., Chapnik, N., et al., Longlived mice exhibit 24 h locomotor circadian rhythms at young and old age, Exp. Gerontol., 2011, vol. 46, pp. 606–609.

    Article  PubMed  Google Scholar 

  39. Herold, M., Cornelissen, G., Rawson, M., et al., About-daily (circadian) and about-weekly (circaseptan) patterns of human salivary melatonin, J. AntiAging Med., 2000, vol. 3, no. 3, pp. 263–267.

    CAS  Google Scholar 

  40. Hofman, M.A. and Swaab, D.F., Living by the clock: the circadian pacemaker in older people, Aging Res. Rev., 2006, vol. 5, pp. 33–51.

    Article  CAS  Google Scholar 

  41. Hughes, M.E., DiTacchio, L., Hayes, R., et al., Harmonics of circadian gene transcription in mammals, PLoS Genet., 2009, vol. 5, p. e1000442.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Jackowska, M., Hamer, M., Carvalho, L.A., et al., Short sleep duration is associated with shorter telomere length in healthy men: findings from the Whitehall II cohort study, PLoS One, 2012, vol. 7, p. e47292.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Janich, P., Pascual, G., Merlos-Suarez, A., et al., The circadian molecular clock creates epidermal stem cell heterogeneity, Nature, 2011, vol. 480, no. 7376, pp. 209–214.

    Article  CAS  PubMed  Google Scholar 

  44. Kalsbeek, A., Perreau-Lenz, S., and Buijs, R.M., A network of (autonomic) clock outputs, Chronobiol. Int., 2006, vol. 23, pp. 521–535.

    Article  CAS  PubMed  Google Scholar 

  45. Kondratov, R.V., Kondratova, A.A., Gorbacheva, V.Y., et al., Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock, Genes Dev., 2006, vol. 20, pp. 1868–1873.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Liang, G., Schernhammer, E., Qi, L., et al., Associations between rotating night shifts, sleep duration, and telomere length in women, PLoS One, 2011, vol. 6, p. e23462.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Libert, S., Bonkowski, M.S., Pointer, K., et al., Deviation of innate circadian period from 24 h reduces longevity in mice, Aging Cell, 2012, vol. 11, pp. 794–800.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lupi, D., Semo, M., and Foster, R.G., Impact of age and retinal degeneration on the light input to circadian brain structures, Neurobiol. Aging, 2012, vol. 33, pp. 383–392.

    Article  PubMed  Google Scholar 

  49. Marcheva, B., Ramsey, K.M., Buhr, E.D., et al., Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes, Nature, 2010, vol. 466, pp. 627–631.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Nakamura, T.J., Nakamura, W., Yamazaki, S., et al., Age-related decline in circadian output, J. Neurosci., 2011, vol. 31, pp. 10201–10205.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Pagani, L., Schmitt, K., Meier, F., et al., Serum factors in older individuals change cellular clock properties, Proc. Natl. Acad. Sci. U.S.A., 2011, vol. 108, pp. 7218–7223.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Putilov, A.A., Munch, M.Y., and Cajochen, C., Principal component structuring of the non-REM sleep EEG spectrum in older adults yields age-related changes in the sleep and wake drives, Curr. Aging Sci., 2013, vol. 6, no. 3, pp. 280–293.

    Article  PubMed  Google Scholar 

  53. Reddy, T.E., Gertz, J., Crawford, G.E., et al., The hypersensitive glucocorticoid response specifically regulates period 1 and expression of circadian genes, Mol. Cell Biol., 2012, vol. 32, no. 18, pp. 3756–3767.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Roenneberg, T., Kuehnle, T., Pramstaller, P.P., et al., A marker for the end of adolescence, Curr. Biol., 2004, vol. 4, no. 24, pp. 1038–1039.

    Article  CAS  Google Scholar 

  55. Roozendaal, B., van Gool, W.A., Swaab, D.F., et al., Changes in vasopressin cells of the rat suprachiasmatic nucleus with aging, Brain Res., 1987, vol. 409, pp. 259–264.

    Article  CAS  PubMed  Google Scholar 

  56. Sellix, M.T., Evans, J.A., Leise, T.L., et al., Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators, J. Neurosci., 2012, vol. 32, no. 46, pp. 16193–16202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Shanmugam, V., Wafi, A., Al-Taweel, N., and Busselberg, D., Disruption of circadian rhythm increases the risk of cancer, metabolic syndrome and cardiovascular disease, J. Local Global Health Sci., 2013, vol. 3. doi: 10.5339/jlghs.2013.3

  58. Shirakawa, T., Honma, S., and Honma, K., Multiple Oscillators in the suprachiasmatic nucleus, Chronobiol. Int., 2001, vol. 18, pp. 371–388.

    Article  CAS  PubMed  Google Scholar 

  59. Sitzmann, B.D., Lemos, D.R., Ottinger, M.A., and Urbanski, H.F., Effects of age on clock gene expression in the rhesus macaque pituitary gland, Neurobiol. Aging, 2010, vol. 31, pp. 696–705.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Somanath, P.R., Podrez, E.A., Chen, J., et al., Deficiency in core circadian protein Bmal1 is associated with a prothrombotic and vascular phenotype, J. Cell Physiol., 2011, vol. 226, pp. 132–140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Sutton, G.M., Ptitsyn, A.A., Floyd, Z.E., et al., Biological aging alters circadian mechanisms in murine adipose tissue depots, Age, 2013, vol. 35, pp. 533–547.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Vinogradova, I. and Anisimov, V., Melatonin prevents the development of metabolic syndrome in male rats exposed to different light/dark regimens, Biogerontology, 2013, vol. 14, pp. 401–409.

    Article  CAS  PubMed  Google Scholar 

  63. Vujovic, N., Davidson, A.J., and Menaker, M., Sympathetic input modulates, but does not determine, phase of peripheral circadian oscillators, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, vol. 295, pp. 355–360.

    Article  CAS  Google Scholar 

  64. Weinert, D., The temporal order of mammals. Evidence for multiple central and peripheral control mechanisms and for endogenous and exogenous components: some implications for research on aging, Biol. Rhythm Res., 2005, vol. 36, no. 4, pp. 293–308.

    Article  Google Scholar 

  65. Weinert, D., Ontogenetic development of the mammalian circadian system, Chronobiol. Int., 2005, vol. 22, no. 2, pp. 179–204.

    Article  PubMed  Google Scholar 

  66. Weinert, D. and Waterhouse, J., The circadian rhythm of core temperature: effects of physical activity and aging, Physiol. Behav., 2007, vol. 90, pp. 246–256.

    Article  CAS  PubMed  Google Scholar 

  67. Weinert, D., Sturm, J., and Waterhouse, J., Different behavior of the circadian rhythms of activity and body temperature during resynchronization following an advance of the LD cycle, Biol. Rhythm Res., 2002, vol. 33, no. 2, pp. 187–198.

    Article  Google Scholar 

  68. Weinert, H., Weinert, D., Schurov, I., et al., Impaired expression of the mPer2 circadian clock gene in the suprachiasmatic nuclei of aging mice, Chronobiol. Int., 2001, vol. 18, pp. 559–565.

    Article  CAS  PubMed  Google Scholar 

  69. Wu, Y.H., Zhou, J.N., van Heerikhuize, J., et al., Decreased MT1 melatonin receptor expression in the suprachiasmatic nucleus in aging and Alzheimer’s disease, Neurobiol. Aging, 2007, vol. 28, no. 8, pp. 1239–1247.

    Article  CAS  PubMed  Google Scholar 

  70. Wyse, C.A. and Coogan, A.N., Impact of aging on diurnal expression patterns of CLOCK and BMAL1 in the mouse brain, Brain Res., 2010, vol. 1337, pp. 21–31.

    Article  CAS  PubMed  Google Scholar 

  71. Yamazaki, S., Straume, M., Tei, H., et al., Effects of aging on central and peripheral mammalian clocks, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 10801–10806.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Yan, L., Foley, N.C., Bobula, J.M., et al., Two antiphase oscillations occur in each suprachiasmatic nucleus of behaviorally split hamsters, J. Neurosci., 2005, vol. 25, no. 39, pp. 9017–9026.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Zhang, L., Lin, Q.-L., Lu, L., et al., Tissue-specific modification of clock methylation in aging mice, Eur. Rev. Med. Pharm. Sci., 2013, vol. 7, pp. 1874–1880.

    Google Scholar 

  74. Zisberg, A., Nurit Gur-Yaish, N., and Shochat, T., Contribution of routine to sleep quality in community elderly, Sleep, 2010, vol. 33, pp. 509–514.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Gubin.

Additional information

Original Russian Text © D.G. Gubin, D. Weinert, 2015, published in Uspekhi Gerontologii, 2015, Vol. 28, No. 2, pp. 257–268.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubin, D.G., Weinert, D. Temporal order deterioration and circadian disruption with age 1. Central and peripheral mechanisms. Adv Gerontol 5, 209–218 (2015). https://doi.org/10.1134/S2079057015040086

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079057015040086

Keywords

Navigation