Skip to main content
Log in

Thin Nanostructured n-WSe2 Films and Their Application in Semiconductor p-Si Photocathodes for Hydrogen Production by Water Splitting

  • PHYSICOCHEMICAL FOUNDATIONS OF DEVELOPMENT OF MATERIALS AND TECHNOLOGIES
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract—

The possibilities of controlling the structure and type of conductivity of WSe2 films formed on p-type silicon by thermal treatment of a thin-film precursor, which was preliminary obtained using pulsed laser deposition, are studied. Pulsed laser ablation of WSe2 and rhenium targets make it possible to obtain amorphous films WSex (x > 2) containing rhenium atoms and inclusions of β-W nanoparticles. During heat treatment at 450°C, the amorphous matrix crystallization occurs, and a layered shell of 2H-WSe2 is formed around the metal nanoparticles. Doping with rhenium leads to the production of n-type WSe2 semiconductor films, which, in terms of their combination of properties (band gap ~1.2 eV, high catalytic activity, and low resistance to current flow), represent a promising material for creating p-Si photocathodes for efficient light-activated production of hydrogen in an acid solution. Theoretical calculations are carried out, which make it possible to identify local areas of the surface of the formed WSe2 films with enhanced catalytic activity in the reaction of hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Liao, Ch.-H., Huang, Ch.-W., and Wu, J.C.S., Hydrogen production from semiconductor-based photocatalysis via water splitting, Catalysts, 2012, vol. 2, pp. 490–516. https://doi.org/10.3390/catal2040490

    Article  CAS  Google Scholar 

  2. Fajrina, N. and Tahir, M., A critical review in strategies to improve photocatalytic water splitting towards hydrogen production, Int. J. Hydrogen Energy, 2019, vol. 44, no. 2, pp. 540–577. https://doi.org/10.1016/j.ijhydene.2018.10.200

    Article  CAS  Google Scholar 

  3. Enesca, A. and Andronic, L., Photocatalytic activity of S-scheme heterostructure for hydrogen production and organic pollutant removal: A mini-review, Nanomaterials, 2021, vol. 11, p. 871. https://doi.org/10.3390/nano11040871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sun, K., Shen, Sh., Liang, Y., Burrows, P.E., Mao, S.S., and Wang, D., Enabling silicon for solar-fuel production, Chem. Rev., 2014, vol. 114, pp. 8662–8719. https://doi.org/10.1021/cr300459q

    Article  CAS  PubMed  Google Scholar 

  5. Lim, S.Y., Seo, D., Jang, M.S., and Chung, T.D., Functional integration of catalysts with Si nanowire photocathodes for efficient utilization of photogenerated charge carriers, ACS Omega, 2021, vol. 6, no. 34, pp. 22311–22316. https://doi.org/10.1021/acsomega.1c03014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fan, R., Mi, Z., and Shen, M., Silicon based photoelectrodes for photoelectrochemical water splitting, Opt. Express, 2019, vol. 27, no. 4, pp. A51–A80. https://doi.org/10.1364/oe.27.000a51

    Article  CAS  PubMed  Google Scholar 

  7. King, L.A., Hellstern, T.R., Park, J., Sinclair, R., and Jaramillo, T.F., Highly stable molybdenum disulfide protected silicon photocathodes for photoelectrochemical water splitting, ACS Appl. Mater. Interfaces, 2017, vol. 9, pp. 36792–36798. https://doi.org/10.1021/acsami.7b10749

    Article  CAS  PubMed  Google Scholar 

  8. Fominski, V., Demin, M., Fominski, D., Romanov, R., Rubinkovskaya, O., Shvets, P., and Goikhman, A., Pulsed laser phosphorus doping and nanocomposite catalysts deposition in forming a-MoSx/NP-Mo//n + p-Si photocathodes for efficient solar hydrogen production, Nanomaterials, 2022, vol. 12, p. 2080. https://doi.org/10.3390/nano12122080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rubinkovskaya, O.V., Nevolin, V.N., Fominskii, D.V., Romanov, R.I., Kartsev, P.F., Fominskii, V.Yu., and Jiang, H., Study of the mechanism of photoactivated hydrogen evolution on a silicon photocathode with a‑MoSx thin-film catalyst, Perspekt. Mater., 2022, no. 11, pp. 5–15. https://doi.org/10.30791/1028-978X-2022-11-5-15

  10. Nevolin, V.N., Fominski, D.V., Romanov, R.I., Rubinkovskaya, O.V., Soloviev, A.A., Shvets, P.V., Maznitsyna, E.A., and Fominski, V.Yu., Influence of sulfidation conditions of WO3 nanocrystalline film on photoelectrocatalytic activity of WS2/WO3 hybrid structure in production of hydrogen, Inorg. Mater.: Appl. Res., 2021, vol. 12, no. 5, pp. 1139–1147. https://doi.org/10.1134/S2075113321050270

    Article  Google Scholar 

  11. Tsai, C., Chan, K., Abild-Pedersen, F., and Nør-skov, J.K., Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study, Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 13156–13164. https://doi.org/10.1039/C4CP01237B

    Article  CAS  PubMed  Google Scholar 

  12. Rahman M.A., Performance analysis of WSe2-based bifacial solar cells with different electron transport and hole transport materials by SCAPS-1D, Heliyon, 2022, vol. 8, p. e09800. https://doi.org/10.1016/j.heliyon.2022.e09800

  13. Romanov, R., Fominski, V., Demin, M., Fominski, D., Rubinkovskaya, O., Novikov, S., Volkov, V., and Doroshina, N., Application of pulsed laser deposition in the preparation of a promising MoSx/WSe2/C(B) photocathode for photo-assisted electrochemical hydrogen evolution, Nanomaterials, 2021, vol. 11, no. 6, p. 1461. https://doi.org/10.3390/nano11061461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fominski, V.Yu., Grigoriev, S.N., Romanov, R.I., Volosova, M.A., Grunin, A.I., and Teterina, G.D., The formation of a hybrid structure from tungsten selenide and oxide plates for a hydrogen-evolution electrocatalyst, Tech. Phys. Lett., 2016, vol. 42, pp. 555–558. https://doi.org/10.1134/S1063785016060055

    Article  CAS  Google Scholar 

  15. Ke, S., Min, X., Liu, Y., Mi, R., Wu, X., Huang, Z., and Fang, M., Tungsten-based nanocatalysts: Research progress and future prospects, Molecules, 2022, vol. 27, p. 4751. https://doi.org/10.3390/molecules27154751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giuffredi, G., Mezzetti, A., Perego, A., Mazzolini, P., Prato, M., Fumagalli, F., Lin, Y., Liu, C., Ivanov, I.N., Belianinov, A., Colombo, M., Divitini, G., Ducati, C., Duscher, G., Puretzky, A.A., et al., Non-equilibrium synthesis of highly active nanostructured, oxygen-incorporated amorphous molybdenum sulfide HER electrocatalyst, Small, 2020, vol. 16, p. 2004047. https://doi.org/10.1002/smll.202004047

  17. Walck, S.D., Zabinski, J.S., Donley, M.S., and Bultman, J.E., Evolution of surface topography in pulsed-laserdeposited thin films of MoS2, Surf. Coat. Technol., 1993, vol. 62, pp. 412–416. https://doi.org/10.1016/0257-8972(93)90276-T

    Article  CAS  Google Scholar 

  18. Fominski, V.Yu., Romanov, R.I., Fominski, D.V., -Dzhumaev, P.S., and Troyan, I.A., Normal and grazing incidence pulsed laser deposition of nanostructured MoSx hydrogen evolution catalysts from a MoS2 target, Opt. Laser Technol., 2018, vol. 102, pp. 74–84. https://doi.org/10.1016/j.optlastec.2017.12.028

    Article  CAS  Google Scholar 

  19. Fominski, V.Yu., Romanov, R.I., Fominski, D.V., and Shelyakov, A.V., Regulated growth of quasi-amorphous MoSx thin-film hydrogen evolution catalysts by pulsed laser deposition of Mo in reactive H2S gas, Thin Solid Films, 2017, vol. 642, pp. 58–68. https://doi.org/10.1016/j.tsf.2017.09.020

    Article  CAS  Google Scholar 

  20. Arnas, C., Chami, A., Couëdel, L., Acsente, T., Cabié, M., and Neisius, T., Thermal balance of tungsten monocrystalline nanoparticles in high pressure magnetron discharges, Phys. Plasmas, 2019, vol. 26, p. 053706. https://doi.org/10.1063/1.5095932

  21. Mao, X., Zou, J., Zou, H., Song, Z., and He, S., Magnetron sputtering fabrication and photoelectric properties of WSe2 film solar cell device, Appl. Surf. Sci., 2018, vol. 444, pp. 126–132. https://doi.org/10.1016/j.apsusc.2018.02.249

    Article  CAS  Google Scholar 

  22. Mabelet, L.B., Malonda-Boungou, B.R., Mabiala-Poaty, H.B., Raji, A.T., and M’Passi-Mabiala, B., Energetics, electronic and magnetic properties of monolayer WSe2 doped with pnictogens, halogens and transition-metal (4d, 5d) atoms: An ab-initio study, Phys. E, 2020, vol. 124, p. 114161. https://doi.org/10.1016/j.physe.2020.114161

  23. Huang, G., Mao, J., Fan, R., Yin, Z., Wu, X., Jie, J., Kang, Z., and Shen, M., Integrated MoSe2 with n + p-Si photocathodes for solar water splitting with high efficiency and stability, Appl. Phys. Lett., 2018, vol. 112, p. 013902. https://doi.org/10.1063/1.5012110

  24. Chen, C.-J., Chen, P.-T., Basu, M., Yang, K.-C., Lu, Y.-R., Dong, C.-L., Ma, C.-G., Shen, C.-C., Hu, S.-F., and Liu, R.-S., An integrated cobalt disulfide (CoS2) cocatalyst passivation layer on silicon microwires for photoelectrochemical hydrogen evolution, J. Mater. Chem. A., 2015, vol. 3, pp. 23466–23476. https://doi.org/10.1039/C5TA06202K

    Article  CAS  Google Scholar 

  25. Basu, M., Zhang, Z.-W., Chen, C.-J., Chen, P.-T., Yang, K.-C., Ma, C.-G., Lin, C.C., Hu, S.-F., and Liu, R.-S., Heterostructure of Si and CoSe2: A promising photocathode based on a non-noble metal catalyst for photoelectrochemical hydrogen evolution, Angew. Chem., Int. Ed., 2015, vol. 54, pp. 6211–6216. https://doi.org/10.1002/anie.201502573

    Article  CAS  Google Scholar 

  26. Bao, X.-Q., Petrovykh, D.Y., Alpuim, P., Stroppa, D.G., Guldris, N., Fonseca, H., Costa, M., Gaspar, J., Jin, C., and Liu, L., Amorphous oxygen-rich molybdenum oxysulfide Decorated p-type silicon microwire Arrays for efficient photoelectrochemical water reduction, Nano Energy, 2015, vol. 16, pp. 130–142. https://doi.org/10.1016/j.nanoen.2015.06.014

    Article  CAS  Google Scholar 

  27. Seo, D., Kim, J.T., Hwang, D.-W., Kim, D.Y., Lim, S.Y., and Chung, T.D., Enhanced H2 evolution at patterned MoSx-modified Si-based photocathodes by incorporating the interfacial 3D nanostructure of Ag, ACS Appl. Mater. Interfaces, 2021, vol. 13, no. 39, pp. 46499–46506. https://doi.org/10.1021/acsami.1c08867

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was carried out at National Research Nuclear University MEPhI and supported by the Russian Science Foundation (grant no. 19-19-00081, https://rscf.ru/project/19-19-00081/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Rubinkovskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubinkovskaya, O.V., Fominski, D.V., Nevolin, V.N. et al. Thin Nanostructured n-WSe2 Films and Their Application in Semiconductor p-Si Photocathodes for Hydrogen Production by Water Splitting. Inorg. Mater. Appl. Res. 14, 1198–1206 (2023). https://doi.org/10.1134/S2075113323050404

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113323050404

Keywords:

Navigation