Skip to main content
Log in

Interaction of Hydrogen Isotopes with Ferritic-Martensitic Steel EK-181-Rusfer (Review of Results Obtained)

  • MATERIALS FOR ENERGETICS AND RADIATION-RESISTANT MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

In this paper the results of the studies of reduced activation ferritic-martensitic steel EK-181 (Rusfer-EK-181, Fe–12 Cr–2 W–V–Ta–B) developed in Russia (Bochvar High-Technology Scientific Research Institute of Inorganic Materials—VNIINM) as a structural material for application as the core components of fast neutron, fusion, and hybrid reactors are summarized. Various aspects of hydrogen interaction with Rusfer steel, primarily retention, diffusion, and the effect of various defects on retention, are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Murry, K.L. and Charit, I., Structural materials for Gen-IV nuclear reactors: Challenges and opportunities, J. Nucl. Mater., 2008, vol. 383, pp. 189–195.

    Article  Google Scholar 

  2. Yvon, P., Le Flem, M., Cabet, C., and Seran, J.L., Structural materials for next generation nuclear systems: Challenges and the path forward, Nucl. Eng. Des., 2015, vol. 294, pp. 161–169.

    Article  CAS  Google Scholar 

  3. Sokolov, Yu.A., Overview of the Russian DEMO plant study, Fusion Eng. Des., 1995, vol. 29, pp. 18–27.

    Article  CAS  Google Scholar 

  4. Borisov, A.A. and Shatalov, G.E., Proekt DEMO-S. Osnovy kontseptsii demonstrativnogo termoyadernogo reaktora DEMO-S (DEMO-S Project. Basics of the Concept of Demonstration Thermonuclear Reactor DEMO-S), Moscow: Kurchatov Inst., 2001, part 5.

  5. Azizov, E.A., Gladush, G.G., and Mineev, A.B., UTS s magnitnym uderzhaniem i razrabotka gibridnogo reaktora sintez-delenie na osnove Tokamaka (Nuclear Fusion Reaction with Magnetic Retention and Development of Hybrid Fusion-Fission Reactor Based on the Tokamak), Moscow: Trovant, 2016.

  6. Federici, G., Biel, W., Gilbert, M.R., Kemp, R., et al., European DEMO design strategy and consequences for materials, Nucl. Fusion, 2007, vol. 57, art. ID 092002.

    Article  Google Scholar 

  7. Porton, M., Aktaa, J., Dechmann, C., Fernandez, P., et al., Structural design criteria development needs for a European DEMO, Fusion Sci. Technol., 2014, vol. 66, pp. 18–27.

    Article  CAS  Google Scholar 

  8. Solonin, M.I., Chernov, V.M., Gorokhov, V.A., Ioltukhovskiy, A.G., et al., Present status and future prospect of the Russian program for fusion low-activation materials, J. Nucl. Mater., 2000, vols. 283–287, pp. 1468–1472.

  9. Chernov, V.M., Leontieva-Smirnova, M.V., Potapenko, M.M., Budylkin, N.I., et al., Structural materials for fusion power reactors—the RF R&D activities, Nucl. Fusion, 2007, vol. 47, pp. 839–848.

    Article  CAS  Google Scholar 

  10. Baluc, N., Abe, K., Boutard, J.L., Chernov, V.M., et al., Status of R&D activities on materials for fusion power reactors, Nucl. Fusion, 2007, vol. 47, pp. S696–S717.

    Article  CAS  Google Scholar 

  11. Cabet, C., Dalle, F., Gaganidze, E., Henry, J., et al., Ferritic-martensitic steels for fission and fusion applications, J. Nucl. Mater., 2019, vol. 523, pp. 510–537.

    Article  CAS  Google Scholar 

  12. Tanigava, H., Gaganidze, E., Hirose, T., Ando, M., et al., Development of benchmark reduced activation ferritic/martensitic steels for fusion energy applications, Nucl. Fusion, 2017, vol. 57, art. ID 092004.

    Article  Google Scholar 

  13. Leont’eva-Smirnova, M.V., Agafonov, A.N., Ermolaev, G.N., Ioltukhovskii, A.G., et al., Microstructure and mechanical properties of low-activation ferritic-martensitic steel EK-181 (RUSFER-EK-181), Perspekt. Mater., 2006, no. 6, pp. 40–52.

  14. Tkachov, V.I., Effect of hydrogen on the properties of structural steels, Mater. Sci., 2005, vol. 41, no. 4, pp. 547–550.

    Article  CAS  Google Scholar 

  15. Goltsov, V.A., Hydrogen-induced phase transformations: A base for a new sphere of the science of metals (an analytical review), Met. Sci. Heat Treat., 2017, vol. 58, pp. 681–689. https://doi.org/10.1007/s11041-017-0078-0

    Article  CAS  Google Scholar 

  16. Chernov, I.I., Staltsov, M.S., Kalin, B.A., and Guseva, L.Yu., Some problems of hydrogen in reactor structural materials: A review, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 5, pp. 643–650.

    Article  Google Scholar 

  17. Danilov, I.V., Kapyshev, V.K., Kovalenko, V.G., Kalashnikov, A.N., et al., Facility for studies of structural materials permeability to hydrogen isotopes, Vopr. Atom. Nauki Tekh., Termoyad. Sintez, 2014, vol. 37, no. 2, pp. 38–44.

    Google Scholar 

  18. Kapyshev, V.A., Vladimirova, N.K., Danilov, I.V., Kartashev, I.A., et al., Development and testing of tritium monitoring systems in the helium and lead-lithium cooled test blanket module, Vopr. Atom. Nauki Tekh., Termoyad. Sintez, 2014, vol. 37, no. 2, pp. 17–26.

    Google Scholar 

  19. Kovalenko, V.G., Danilov, I.V., Sergeyev, G.A., and Shushlebin, V.V., In-pile loop with lithium-lead eutectic, Vopr. Atom. Nauki Tekh., Termoyad. Sintez, 2015, vol. 38, no. 3, pp. 16–21.

    Google Scholar 

  20. Golubeva, A.V., Bobyr, N.P., Cherkez, D.I., Spi-tsyn, A.V., et al., Hydrogen interaction with the low activation ferritic–martensitic steel EK-181 (Rusfer), J. Nucl. Mater., 2013, vol. 438, pp. S983–S987.

    Article  CAS  Google Scholar 

  21. Denisov, E.A., Kompaniets, T.N., Murzinova, M.A., and Yukhimchuk, A.A., Jr., Accumulation and transport of hydrogen in RUSFER-EK-181 ferritic-martensitic steel, Tech. Phys., 2013, vol. 58, no. 6, pp. 814–820. https://doi.org/10.1134/S1063784213060108

    Article  CAS  Google Scholar 

  22. Martynova, Y., Moeler, S., Rasinski, M., Matveev, D., Freisinger, M., et al., Deuterium retention in RAFM steels after high fluence plasma exposure, Nucl. Mater. Energy, 2017, vol. 12, pp. 648–654.

    Article  Google Scholar 

  23. Blokhin, A.I., Fursov, B.I., Manokhin, V.N., Andrianov, A.N., and Chernov, V.M., Provision of researches of activation and transmutation characteristics of structural materials by means of nuclear physics data, Vopr. Atom. Nauki Tekh., Materialoved. Nov. Mater., 2004, no. 2 (63), pp. 46–89.

  24. Blokhin, D.A., Leontyeva-Smirnova, M.V., Chernov, V.M., et al., Nuclear physical properties of ferritic-martensitic steel EK-181 under conditions of long-term neutron irradiation in fast breeder BN-600 and fusion DEMO-RF reactors, Inorg. Mater.: Appl. Res. 2011, vol. 2, pp. 129–135. https://doi.org/10.1134/S2075113311020067

    Article  Google Scholar 

  25. Blokhin, D.A., Chernov, V.M., and Blokhin, A.I., Nuclear physical properties of ferritic-martensitic steels EK-181 and EP-823 under neutron irradiation in fast reactor BREST-OD-300, Vopr. Atom. Nauki Tekh., Materialoved. Nov. Mater., 2015, no. 3 (82), pp. 110–127.

  26. Bolt, H., Barabash, V., Federici, G., Linke, J., et al., Plasma facing and high heat flux materials – needs for ITER and beyond, J. Nucl. Mater., 2002, vols. 307–311, part 1, pp. 43–52.

  27. Roth, J., Sugiyama, K., Alimov, V., Höschen, T., et al., EUROFER as wall material: Reduced sputtering yields due to W surface enrichment, J. Nucl. Mater., 2014, vol. 454, nos. 1–3, pp. 1–6.

  28. Tolstolutskaya, G.D., Ruzhytskyi, V.V., Voyevodin, V.N., Kopanets, I.E., et al., The role of radiation damage on retention and temperature intervals of helium and hydrogen detrapping in structural materials, J. Nucl. Mater., 2013, vol. 442, pp. S710–S714.

    Article  CAS  Google Scholar 

  29. Klimov, N.S., Putrik, A.B., Linke, J., Pitts, R.A., et al., Plasma facing materials performance under ITER relevant mitigated disruption photonic heat loads, J. Nucl. Mater., 2015, vol. 463, pp. 61–65.

    Article  CAS  Google Scholar 

  30. Emelyanova, O.V., Dzhumaev, P.S., Yakushin, V.L., Kalin, B.A., et al., Surface modification of low activation ferritic–martensitic steel EK-181 (Rusfer) by high temperature pulsed plasma flows, Nucl. Instrum. Methods Phys. Res., Sect. B, 2015, vol. 365, part A, pp. 218–221. https://doi.org/10.1016/j.nimb.2015.08.048

  31. Serra, E., Benamati, G., and Ogorodnikova, O.V., Hydrogen isotopes transport parameters in fusion reactor materials, J. Nucl. Mater., 1998, vol. 255, pp. 105–115.

    Article  CAS  Google Scholar 

  32. Pressouyre, G.M., Classification of hydrogen traps in steel, Metall. Mater. Trans. A, 1979, vol. 10, pp. 1571–1573.

    Article  Google Scholar 

  33. Esteban, G.A., Perujo, A., Douglas, K., and Sedano, L.A., Tritium diffusive transport parameters and trapping effects in the reduced activating martensitic steel OPTIFER-IVb, J. Nucl. Mater., 2000, vol. 281, no. 1, pp. 34–41.

    Article  CAS  Google Scholar 

  34. Gaganidze, E. and Aktaa, J., Assessment of neutron irradiation effects on RAFM steels, Fusion Eng. Des., 2013, vol. 83, pp. 118–128.

    Article  Google Scholar 

  35. Odette, G.R. and Zinkle, S.J., Structural Alloys for Nuclear Energy Applications, Elsevier, 2019.

    Google Scholar 

  36. Nishijima, D., Tokitani, M., Patino, M.I., Nagata, D., Golubeva, A.V., and Doerner, R.P., Effect of Cr-rich surface layer on D retention in various RAFM steels, Phys. Scr., 2020, vol. 2020, art. ID 014005. https://doi.org/10.1088/1402-4896/ab3702

    Article  Google Scholar 

  37. Tyumentsev, A.N., Chernov, V.M., Leont’eva-Smirnova, M.V., et al., Tech. Phys., 2012, vol. 57, pp. 48–54.

    Article  CAS  Google Scholar 

  38. Mayer, M., Improved physics in SIMNRA 7, Nucl. Instrum. Methods Phys. Res., Sect. B, 2014, vol. 332, pp. 176–180.

    CAS  Google Scholar 

  39. Spitsyn, A.V., Golubeva, A.V., Bobyr, N.P., and Khripunov, B.I., Retention of deuterium in damaged low-activation steel Rusfer (EK-181) after gas and plasma exposure, J. Nucl. Mater., 2014, vol. 455, pp. 561–567.

    Article  CAS  Google Scholar 

  40. Nishijima, D., Tokitani, M., Patino, M.I., Nagata, D., Golubeva, A.V., and Doerner, R.P., Impact of seeded plasma impurities on D retention in RAFM steels, Nucl. Mater. Energy, 2020, vol. 23, art. ID 100740.

  41. Hatano, Y., Alimov, V.Kh., Spitsyn, A.V., Bobyr, N.P., et al., Tritium retention in reduced-activation ferritic/martensitic steels, Fusion Sci. Technol., 2015, vol. 67, pp. 361–364.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Artyom A. Mednikov and Dmitry A. Kozlov of the National Research Center Kurchatov Institute for their help in preparing samples and to Vitaly S. Efimov of the National Research Nuclear University MEPhI for performing the thermodesorption studies.

Funding

This work was supported by the National Research Center Kurchatov Institute (order no. 1805, dated August 14, 2019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Golubeva, N. P. Bobyr, D. I. Cherkez, Yu. M. Gasparyan, B. I. Khripunov, N. S. Klimov, A. V. Spitsyn or V. M. Chernov.

Additional information

Translated by N. Semenova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubeva, A.V., Bobyr, N.P., Cherkez, D.I. et al. Interaction of Hydrogen Isotopes with Ferritic-Martensitic Steel EK-181-Rusfer (Review of Results Obtained). Inorg. Mater. Appl. Res. 12, 1196–1205 (2021). https://doi.org/10.1134/S2075113321050117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321050117

Keywords:

Navigation