Skip to main content
Log in

Predictions of Chalcospinels with Composition ABCX4 (X = S or Se)

  • MATERIALS OF ELECTRONIC ENGINEERING
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

New chalcospinels of the most common compositions were predicted: AIBIIICIVX4 (X = S or Se) and AIIBIIICIIIS4 (A, B, and C are various chemical elements). They are promising for the search for new materials for magneto-optical memory elements, sensors, and anodes in sodium-ion batteries. The parameter “a” values of their crystal lattice are estimated. When predicting, only the values of the properties of chemical elements were used. The calculations were carried out using machine learning programs that are part of the information-analytical system developed by the authors (various ensembles of algorithms of the binary decision trees, the linear machine, the search for logical regularities of classes, the support vector machine, Fisher linear discriminant, the k-nearest neighbors, the learning a multilayer perceptron, and a neural network) for predicting chalcospinels not yet obtained, as well as an extensive family of regression methods, presented in the scikit-learn package for the Python language, and multilevel machine learning methods that were proposed by the authors for estimation of the lattice parameter value of new chalcospinels. The prediction accuracy of new chalcospinels according to the results of the cross-validation is not lower than 80%, and the prediction accuracy of the parameter of their crystal lattice (according to the results of calculating the mean absolute error when cross-validation in the leave-one-out mode) is ±0.1 Å. The effectiveness of using multilevel machine learning methods to predict the physical properties of substances is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Veliev, R.K., Dzhabbarov, A.I., Guseinov, G.G., Seidov, F.M., and Abutalybova, Z.M., Synthesis and electrical-conductivity of the layered antiferromagnet CoGaInS4, Inorg. Mater., 1991, vol. 27, no. 6, pp. 984–986.

    Google Scholar 

  2. Belov, K.P., Tret’yakov, Yu.D., Gordeev, I.V., Koroleva, L.I., and Kesler, Ya.A., Magnitnye poluprovodnikikhal’kogenidnye shpineli (Chalcogenide Spinels—Magnetic Semiconductors), Moscow: Mosk. Gos. Univ., 1981.

  3. Fedorov, V.A., Kesler, Ya.A., and Zhukov, E.G., Magnetic semiconducting chalcogenide spinels: Preparation and physical chemistry, Inorg. Mater., 2003, vol. 39, pp. S68–S88. https://doi.org/10.1023/B:INMA.0000008887.8

  4. Myoung, B.R., Lim, J.T., and Kim, C.S., Investigation of magnetic properties on spin-ordering effects of FeGa2S4 and FeIn2S4, J. Magn. Magn. Mater., 2017, vol. 438, pp. 121–125.https://doi.org/10.1016/j.jmmm.2017.04.056

  5. Sukhorukov, Yu.P., Bebenin, N.G., Telegin, A.V., and Nosov, A.P., Magnetooptical properties of ferro- and ferrimagnetic spinels, Phys. Met. Metallogr., 2018, vol. 119, no. 12, pp. 1167–1174. https://doi.org/10.1134/S0031918X18120219

    Article  CAS  Google Scholar 

  6. Telegin, A.V., Sukhorukov, Yu.P., Loshkareva, N.N., Mostovshchikova, E.V., Bebenin, N.G., Gan’shina, E.A., and Granovsky, A.B., Giant magnetotransmission and magnetoreflection in ferromagnetic materials, J. Magn. Magn. Mater., 2015, vol. 383, pp. 104–109. https://doi.org/10.1016/j.jmmm.2014.11.080

    Article  CAS  Google Scholar 

  7. Krengel, M., Hansen, A.-L., Kaus, M., Indris, S., Wolff, N., Kienle, L., Westfal, D., and Bensch, W., CuV2S4: A high rate capacity and stable anode material for sodium ion batteries, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 25, pp. 21283–21291. https://doi.org/10.1021/acsami.7b04739

    Article  CAS  PubMed  Google Scholar 

  8. Redin, V.V., Nikiforov, K.G., and Bondarenko, G.G., Magnetic nanoclusters in diluted magnetic semiconductors based on CdIn2S4 and CuInSe2, Perspekt. Mater., 2008, no. 4, pp. 29–33.

  9. Bolzoni, F., Delgado, G.E., and Sagredo, V., Structural characterization and magnetic properties of the spinel compound CoIn0.5Cr1.5S4, Cryst. Res. Technol., 2008, vol. 43, no. 2, pp. 141–144. https://doi.org/10.1002/crat.200711037

    Article  CAS  Google Scholar 

  10. Yohannan, J.P. and Vidyasagar, K., Syntheses, structural variants and characterization of AInM′S4 (A = alkali metals, Tl; M′ = Ge, Sn) compounds; facile ion-exchange reactions of layered NaInSnS4 and KInSnS4 compounds, J. Solid State Chem., 2016, vol. 238, pp. 291–302. https://doi.org/10.1016/j.jssc.2016.03.045

  11. Kiselyova, N.N., Dudarev, V.A., and Stolyarenko, A.V., Integrated system of databases on the properties of inorganic substances and materials, High Temp., 2016, vol. 54, no. 2, pp. 215–222. https://doi.org/10.1134/S0018151X16020085

    Article  CAS  Google Scholar 

  12. Mauhl, D., Pickardt, J., and Reuter, B., Züchtung und untersuchung von einkristallen einiger Ternärer und quaternärer Kupferthiospinelle, Z. Anorg. Allg. Chem., 1982, vol. 491, no. 1, pp. 203–207. https://doi.org/10.1002/zaac.19824910126

    Article  Google Scholar 

  13. Padiou, J., Bideau, D., and Troadec, J.P., Propriétés magnétiques et électriques de thiospinelles quaternaires, J. Solid State Chem., 1980, vol. 31, no. 3, pp. 401–405. https://doi.org/10.1016/0022-4596(80)90105-X

    Article  CAS  Google Scholar 

  14. Strick, G., Eulenberger, G., and Hahn, H., Über einige quaternäre chalkogenide mit spinellstruktur, Z. Anorg. Allg. Chem., 1968, vol. 357, nos. 4–6, pp. 338–344. https://doi.org/10.1002/zaac.19683570421

  15. Landolt–Börnstein: Numerical Data and Functional Relationships in Science and Technology – New Series, Group III: Crystal and Solid State Physics, vol. 14B1: Structure Data of Elements and Intermetallic Phases, Berlin: Springer, 1986. ISBN 3-540-15411-6

  16. Lutz, H.D., Jung, M., and Wussow, K., Phase relationships in the quaternary systems MS–Cr2S3–In2S3 (M = Mn, Fe, Co, Ni), miscibility gaps in spinel solid solutions, Mater. Res. Bull., 1986, vol. 21, no. 2, pp. 161–167. https://doi.org/10.1016/0025-5408(86)90202-3

    Article  CAS  Google Scholar 

  17. Delgado, G.E., Mora, A.J., Betancourt, L., and Sagredo, V., Rietveld refinement of the semiconducting compound CdGaCrS4 from X-ray powder diffraction, Phys. Status Solidi A, 2003, vol. 199, no. 3, pp. 373–377. https://doi.org/1002/pssa.200306665

    Article  CAS  Google Scholar 

  18. Azizov, T.K., Guseinov, G.G., Kuliev, A.S., and Na-giev, R.A., Growth and properties of CdInSbS4 single-crystals, Inorg. Mater., 1986, vol. 22, no. 5, pp. 638–640.

    Google Scholar 

  19. Haeuseler, H. and Kwarteng-Acheampong, W., Structural studies in the systems CoS–Cr2S3–Ga2S3 and MGa2S4–MCr2S4 (M = Zn, Cd, Hg), J. Solid State Chem., 1988, vol. 72, no. 2, pp. 324–329. https://doi.org/10.1016/0022-4596(88)90036-9

    Article  CAS  Google Scholar 

  20. Lutz, H.D. and Haeuseler, H., IR-spektroskopische und röntgenographische untersuchungen an thiospinellmischkristallen, J. Solid State Chem., 1975, vol. 13, no. 3, pp. 215–222. https://doi.org/10.1016/0022-4596(75)90122-X

    Article  CAS  Google Scholar 

  21. Kugimiya, K. and Steinfink, H., The influence of crystal radii and electronegativities on the crystallization of AB2X4 stoichiometries, Inorg. Chem., 1968, vol. 7, no. 9, pp. 1762–1770. https://doi.org/10.1021/ic50067a015

    Article  CAS  Google Scholar 

  22. Iglesias, J.E. and Steinfink, H., Crystal chemistry of AB2X4 (X = S, Se, Te) compounds, J. Solid State Chem., 1973, vol. 6, no. 1, pp. 119–125. https://doi.org/10.1016/0022-4596(73)90211-9

    Article  CAS  Google Scholar 

  23. Hill, R.J., Craig, J.R., and Gibbs, G.V., Systematic of the spinel structure type, Phys. Chem. Minerals, 1979, vol. 4, no. 4, pp. 317–339. https://doi.org/10.1007/BF00307535

    Article  CAS  Google Scholar 

  24. Burdett, J.K., Price, G.D., and Price, S.L. Role of the crystal-field theory in determining the structures of spinels, J. Am. Chem. Soc., 1982, vol. 104, no. 1, pp. 92–95. https://doi.org/10.1021/ja00365a019

    Article  CAS  Google Scholar 

  25. Meloni, F. and Shaukat, A., Classification of the AB2C4 spinels: A pseudopotential orbital radii approach, Prog. Cryst. Growth Charact., 1984, vol. 10, pp. 37–43. https://doi.org/10.1016/0146-3535(84)90016-9

    Article  Google Scholar 

  26. Haeuseler, H., Structure field maps for sulfides of composition AB2X4, J. Solid State Chem., 1990, vol. 86, no. 2, pp. 275–278. https://doi.org/10.1016/0022-4596(90)90143-L

    Article  CAS  Google Scholar 

  27. Haeuseler, H. and Stork, H.J., Phase relationships in the systems MGa2S4–MSc2S4 (M = Co, Zn, Cd), J. Alloys Compd., 1992, vol. 186, no. 1, pp. 147–151.

    Article  CAS  Google Scholar 

  28. Haeuseler, H. and Srivastava, S.K., Phase equilibria and layered phases in the systems A2X3–M2X3–M’X (A = Ga, In; M = trivalent metal; M' = divalent metal; X = S, Se), Z. Kristallogr. – Cryst. Mater., 2000, vol. 215, no. 4, pp. 141–153. https://doi.org/10.1524/zkri.2000.215.4.205

    Article  Google Scholar 

  29. Brik, M.G., Suchocki, A., and Kaminska, A., Lattice parameters and stability of the spinel compounds in relation to the ionic radii and electronegativities of constituting chemical elements, Inorg. Chem., 2014, vol. 53, no. 10, pp. 5088–5099. https://doi.org/10.1021/ic500200a

    Article  CAS  PubMed  Google Scholar 

  30. Beznosikov, B.V., Prognosis of crystals with phase transitions in the α-K2SO4 family, Ferroelectrics, 1993, vol. 144, no. 1, pp. 179–183. https://doi.org/10.1080/00150199308008641

    Article  CAS  Google Scholar 

  31. Beznosikov, B.V. and Aleksandrov, K.S., Crystal chemistry and prediction of new compounds of the YbFe2O4  and Yb2Fe3O7 types, Perspekt. Mater., 2007, no. 1, pp. 46–49.

  32. Zhang, X., Stevanovic, V., d’Avezac, M., Lany, S., and Zunger, A., Prediction of A2BX4 metal-chalcogenide compounds via first-principles thermodynamics, Phys. Rev. B, 2012, vol. 86, no. 1, art. ID 014109. https://doi.org/10.1103/PhysRevB.86.014109

    Article  CAS  Google Scholar 

  33. Kiselеva, N.N. and Savitskii, E.M., Prediction of chalcogenide spinels of the general formula AB2X4 using the machine learning method, Zh. Neorg. Khim., 1979, vol. 24, no. 6, pp. 1427–1429.

    Google Scholar 

  34. Savitskii, E.M., Gribulya, V.B., Kiseleva, N.N., Ristich, M., Nikolich, Z., Stoiilkovich, Z., Zhivkovich, M., and Arsent’eva, I.P., Prognozirovanie v materialovedenii s primeneniem EVM (Prediction in Materials Science Using Computer), Moscow: Nauka, 1990. ISBN 5-02-006045-3.

  35. Gladun, V.P., Protsessy formirovaniya novykh znanii (The Processes of the Formation of New Knowledge), Sofia: SD “Pedagog-6”, 1995. ISBN 954-8249-06-5

  36. Talanov, V.M. and Frolova, L.A., Use of potential function methods for the studies of possible formation of chalcogenide spinels, Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhnol., 1981, vol. 24, no. 3, pp. 274–276.

    CAS  Google Scholar 

  37. Kiselyova, N.N., Stolyarenko, A.V., Ryazanov, V.V., Sen’ko, O.V., Dokukin, A.A., and Podbel’skii, V.V., A system for computer-assisted design of inorganic compounds based on computer training, Pattern Recognit. Image Anal., 2011, vol. 21, no. 1, pp. 88–94. https://doi.org/10.1134/S1054661811010081

    Article  Google Scholar 

  38. Senko, O.V., An optimal ensemble of predictors in convex correcting procedures, Pattern Recognit. Image Anal., 2009, vol. 19, no. 3, pp. 465–468. https://doi.org/10.1134/S1054661809030110

    Article  Google Scholar 

  39. Zhuravlev, Yu.I., Ryazanov, V.V., and Sen’ko, O.V., Raspoznavanie. Matematicheskie metody. Programmnaya sistema. Prakticheskie primeneniya (Recognition. Mathematical Methods. Program System. Practical Applications), Moscow: FAZIS, 2006. ISBN 5-7036-0108-8

  40. Bochkaryov, P.V. and Guseva, A.I., The use of clustering algorithms ensemble with variable distance metrics in solving problems of Web mining, Proc. 5th Int. Conf. on Future Internet of Things and Cloud Workshops, W-FiCloud (August 21–23, 2017, Prague, Czech Republic), pp. 41–46. ISBN 978-1-5386-2075-5

  41. Majid, A., Khan, A., Javed, G., and Mirza, A.M., Lattice constant prediction of cubic and monoclinic perovskites using neural networks and support vector regression, Comput. Mater. Sci., 2010, vol. 50, no. 2, pp. 363–372. https://doi.org/10.1016/j.commatsci.2010.08.028

    Article  CAS  Google Scholar 

  42. Kockan, U. and Evis, Z., Prediction of hexagonal lattice parameters of various apatites by artificial neural network, J. Appl. Crystallogr., 2010, vol. 43, no. 4, pp. 769–779. https://doi.org/10.1107/S0021889810018133

    Article  CAS  Google Scholar 

  43. Oliynyk, A.O., Adutwum, L.A., Rudyk, B.W., Pisavadia, H., Lotfi, S., Hlukhyy, V., Harynuk, J.J., Mar, A., and Brgoch, J., Disentangling structural confusion through machine learning: Structure prediction and polymorphism of equiatomic ternary phases ABC, J. Am. Chem. Soc., 2017, vol. 139, no. 49, pp. 17870–17881. https://doi.org/10.1021/jacs.7b08460

    Article  CAS  PubMed  Google Scholar 

  44. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., Scikit-learn: Machine learning in python, J. Mach. Learn. Res., 2011, vol. 12, pp. 2825–2830.

    Google Scholar 

  45. Senko, O.V., Dokukin, A.A., Kiselyova, N.N., and Khomutov, N.Yu., Two-stage method for constructing linear regressions using optimal convex combinations, Dokl. Math., 2018, vol. 97, no. 2, pp. 113–114. https://doi.org/10.1134/S1064562418020035

    Article  Google Scholar 

  46. Hoerl, A.E. and Kennard, R.W., Ridge-regression: Biased estimation for nonorthogonal problems, Technometrics, 1970, vol. 12, no. 1, pp. 55–67.

    Article  Google Scholar 

  47. MacKay, D.J.C., Bayesian interpolation, Neural Comput., 1992, vol. 4, no. 3, pp. 415–447. https://doi.org/10.1162/neco.1992.4.3.415

    Article  Google Scholar 

  48. Breiman, L., Random forests, Mach. Learn., 2001, vol. 45, no. 1, pp. 5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  49. Zou, H. and Hastie, T., Regularization and variable selection via the elastic net, J. R. Stat. Soc.: Ser. B, 2005, vol. 67, no. 2, pp. 301–320. https://doi.org/10.1111/j.1467-9868.2005.00503.x

    Article  Google Scholar 

Download references

Funding

This study was partially supported by the Russian Foundation for Basic Research, projects 20-01-00609 and 18-07-00080. The study was carried out in accordance with state assignment nos. 007-00129-18-00 and 0063-2020-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Kiselyova.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselyova, N.N., Dudarev, V.A., Ryazanov, V.V. et al. Predictions of Chalcospinels with Composition ABCX4 (X = S or Se). Inorg. Mater. Appl. Res. 12, 328–336 (2021). https://doi.org/10.1134/S2075113321020246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321020246

Keywords:

Navigation