Skip to main content
Log in

Underground operation at best sensitivity of the mobile LNE-SYRTE cold atom gravimeter

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

Low noise underground environments offer conditions allowing assessment of ultimate performance of high sensitivity sensors such as accelerometers, gyrometers, seismometers⋯ Such facilities are for instance ideal for observing the tiny signals of interest for geophysical studies. Laboratoire Souterrain à Bas Bruit (LSBB) in which we have installed our cold atom gravimeter provides such an environment. We report here the best short term sensitivity ever obtained without any ground vibration isolation system with such an instrument: 10−8 m s−2 in 100 s measurement time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kasevich, M. and Salomon, C., Special Issue: “Quantum Mechanics for Space Application: From Quantum Optics to Atom Optics and General Relativity”, Appl. Phys. B, 2006, vol. 84, no. 4, pp. 543–544, and all following articles.

    Article  Google Scholar 

  2. Peters, A., Chung, K.Y., and Chu, S., High-precision gravity measurements using atom interferometry, Metrologia, 2001, vol. 38, pp. 25–61.

    Article  Google Scholar 

  3. Jiang, Z. et al, The 8th International Comparison of Absolute Gravimeters 2009—The First Metrological Key Comparison CCM.G-K1, Metrologia, 2012, vol. 49, pp. 666–684.

    Article  Google Scholar 

  4. Francis, O. et al., The European Comparison of Absolute Gravimeters 2011 (ECAG-2011) in Walferdange, Luxembourg: results and recommendations, Metrologia, 2013, vol. 50, pp. 257–268.

    Article  Google Scholar 

  5. Geiger, R., Ménoret, V., Stern, G., Zahzam, N., Cheinet, P., Battelier, B., Villing, A., Moron, F., Lours, M., Bidel, Y., Bresson, A., Landragin, A., and Bouyer, P., Detecting inertial effects with airborne matter-wave interferometry, Nature Communications, 2011, no. 2, p. 474.

    Google Scholar 

  6. McGuinness, H.J., Rakholia, A.V., and Biedermann, G.W., High data-rate atom interferometer for measuring acceleration, Appl. Phys. Lett., 2012, vol. 100, p. 011106.

    Article  Google Scholar 

  7. McGuirk, J.M., Foster, G.T., Fixler, J.B., Snadden, M.J., and Kasevich, M., Sensitive absolute-gravity gradiometry using atom interferometry, Phys. Rev. A, 2002, vol. 65, p. 033608.

    Article  Google Scholar 

  8. Barrett, B., Gominet, P.-A., Cantin., E., Antoni-Micollier, L., Bertoldi, A., Battelier, B., Bouyer, P., Lautier, J., and Landragin, A., Mobile and remote inertial sensing with atom interferometers, 2013, arXiv:1311.7033v4

    Google Scholar 

  9. Le Gouët, J., Mehlstäubler, T.E., Kim, J., Merlet, S., Clairon, A., Landragin, A., and Pereira Dos Santos, F., Limits to the sensitivity of a low noise compact atomic gravimeter, Appl. Phys. B, 2008, vol. 92, pp. 133–144.

    Article  Google Scholar 

  10. Schmidt, M., Senger, A., Hauth, M., Freirer, C., Schkolnik, V., and Peters, A., A mobile high-precision absolute gravimeter based on atom interferometry, Gyroscopy and Navigation, 2011, vol. 2, no. 3, pp. 170–177.

    Article  Google Scholar 

  11. Zhou, M.-K., Hu, Z.-K., Duan, X.-C., Sun, B.-L., Chen, L.-L., Zhang, Q.-Z., and Luo, J., Performance of a cold-atom gravimeter with an active vibration isolator, Phys. Rev. A, 2012, vol. 86, p. 043630.

    Article  Google Scholar 

  12. Merlet, S., Le Gouët, J., Bodart, Q., Clairon, A., Landragin, A., Pereira Dos Santos, F., and Rouchon, P., Operating an atom interferometer beyond its linear range, Metrologia, 2009, vol. 46, pp. 87–94.

    Article  Google Scholar 

  13. D’Oreye N., Van Dam, T., and Francis, O., 2000, An International Reference Station for Inter-Comparison of Absolute Gravimeters (ISIAG) in Walferdange, Luxembourg: the GRAVILUX Project, Bull. D’Inf. Du BGI, 2000, vol. 86, pp. 27–36.

    Google Scholar 

  14. Dimopoulos, S., Graham, P.W., Hogan, J.M., Kasevich, M.A., and Rajendran, S., Atomic gravitational wave interferometric sensor, Phys. Rev. D, 2008, vol. 78, p. 122002.

    Article  Google Scholar 

  15. Ertmer, W. et al., Matter wave explorer of gravity (MWXG), Exp. Astron., 2009, vol. 23, pp. 611–649.

    Article  Google Scholar 

  16. Wolf, P. et al., Quantum physics exploring gravity in the outer solar system, Exp. Astron., 2009, vol. 23, pp. 651–687.

    Article  Google Scholar 

  17. Schubert, C. et al., Differential atom interferometry with 87Rb and 85Rb for testing the UFF in STE-QUEST, 2013, arXiv:1312.5963.

    Google Scholar 

  18. Cheinet, P., Pereira Dos Santos, F., Petelski, T., Le Gouët, J., Kim, J., Therkildsen, K.T., Clairon, A., and Landragin, A., Compact laser system for atom interferometry, App. Phys. B, 2006, vol. 84, pp. 643–646.

    Article  Google Scholar 

  19. Louchet-Chauvet, A., Farah, T., Bodart, Q., Clairon, A., Landragin, A., Merlet, S., and Pereira Dos Santos, F., Influence of transverse motion within an atomic gravimeter, New J. Phys., 2011, vol. 13, p. 065025.

    Article  Google Scholar 

  20. Bordé, Ch.J., Atom interferometry with internal state labeling, Phys. Lett. A, 1989, vol. 140, no. 10.

    Google Scholar 

  21. Bordé, Ch.J., Theoretical tools for atom optics and interferometry, C.R. Acad. Sci. Paris, 2001, t.2, Série IV, pp. 509–530.

    Google Scholar 

  22. http://www.minusk.com

  23. Gaffet, S., Guglielmi, Y., Virieux, J., Waysand, G., Chwala, A., Stolz, R., Emblanch, C., Auguste, M., Boyer, D, and Cavaillou, D., Simultaneous seismic and magnetic measurements in the Low-Noise Underground Laboratory (LSBB) of Rustrel, France, during the 2001 January 26 Indian earthquake, Geophys. J. Int., 2003, vol. 155, pp. 981–990.

    Article  Google Scholar 

  24. Gaffet, S., Wang, J.S.Y., Yedlin, M., Nolet, G., Maron, C., Brunel, D., Cavaillou, A., Boyer, D., Sudre, C., and Auguste, M., A 3D broadband seismic array at LSBB, IRIS DMS Electronic Newsletter, 2009, vol. 11, no. 3.

    Google Scholar 

  25. Wang, J.S.Y., Guglielmi, Y., and Gaffet, S., Collaborative projects between two USA-France national subsurface laboratories to improve imaging of fracturedporous rocks properties and coupled THMCB processes, Rock Mechanics in Civil and Environmental Engineering, Zhao, Labiouse, Dudt, and Mathier, Eds., London: Taylor & Francis Group, 2010, ISBN 978-0-415-58654-2, pp. 857–860.

    Google Scholar 

  26. Merlet, S., Kopaev, A., Diament, M., Genevès, G., Landragin, A., and Pereira Dos Santos, F., Microgravity investigations for the LNE watt balance project Metrologia, 2008, vol. 45, pp. 265–274.

    Article  Google Scholar 

  27. Peterson, J., Observations and modeling of seismic background noise USGS, 1993, Open file Rept 93-322.

    Google Scholar 

  28. Gauguet, A., Mehlstäubler, T.E., Lévèque, T., Le Gouët, J., Chaibi, W., Canuel, W., Clairon, A., Pereira Dos Santos, F., and Landragin, A., Off-resonant Raman transition impact in an atom interferometer, Phys. Rev. A, 2008, vol. 78, p. 043615.

    Article  Google Scholar 

  29. Hu, Z.-K., Sun, B.-L., Duan, X.-C., Zhou, M.-K., Chen, L.-L., Zhan, S., Zhang, Q.-Z., and Luo, J., Demonstration of an ultra-high sensitivity atom interferometry gravimeter, Phys. Rev. A, 2013, vol. 88, p. 043610.

    Article  Google Scholar 

  30. Cheinet, P., Canuel, B., Pereira Dos Santos, F., Gauguet, A., Yver-Leduc, F., and Landragin, A., Measurement of the sensitivity function in a time-domain atomic interferometer, IEEE Trans. on Instrum. and Meas., 2008, vol. 57, no. 6, pp. 1141–1148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Merlet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farah, T., Guerlin, C., Landragin, A. et al. Underground operation at best sensitivity of the mobile LNE-SYRTE cold atom gravimeter. Gyroscopy Navig. 5, 266–274 (2014). https://doi.org/10.1134/S2075108714040051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075108714040051

Keywords

Navigation