Skip to main content
Log in

Theoretical investigation of the CO oxidation on Al12Zr Cluster

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Equilibrium geometries of Al12Zr cluster were systematically studied on the basis of density functional theory with generalized gradient approximation. To gain insights into high catalytic activity we use the CO oxidation as a benchmark probe. In Al–Zr bimetallic clusters, Zr site is the catalytically active centre, the adsorption of CO and O2 on the same site respectively (single-site mechanism), a Langmuir-Hinshelwood (LH) mechanism is proposed, which proceed via two steps, CO + O2 → CO2 + O and CO + O → CO2. Two CO oxidation mechanisms of two CO2 molecules as product have been simulated. For the later mechanism, the key step is the O–O bond scission in the OCOO* intermediate, which is significantly accelerated due to the attack of the neighboring CO molecule. The calculated barriers for the later reactions are lower compared with the former reaction. Detailed reaction paths corresponding to this case are calculated. Our study suggests that the CO oxidation catalyzed by Al12Zr cluster is likely to occur at the room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hua, Y.W., Liu, Y.L., Jiang, G., et al., J. Phys., 2013, vol. 117, p. 2590.

    Google Scholar 

  2. Zhao, Y.X., Wu, X.N., Ma, J.B., et al., Phys. Chem., 2011, vol. 13, p. 1925.

    Google Scholar 

  3. Reddy B.M. and Khan A., Cat. Rev., 2005, vol. 47, p. 257.

    Article  Google Scholar 

  4. Nahar, R.K., Sing, V., and Sharma, A., J. Mater., 2007, vol. 18, p. 615.

    Google Scholar 

  5. González-Navarrete, P., Calatayud, M., Andrés, J., et al., J. Phys., 2013, vol. 117, p. 5354.

    Google Scholar 

  6. Fang, Z.T., Outlaw, M.D., Smith, K.K., et al., J. Phys., 2012, vol. 116, p. 8475.

    Google Scholar 

  7. Liu, Y., Wen, C., Guo, Y., et al., J. Phys., 2010, vol. 114, p. 9889.

    Google Scholar 

  8. Nakatsuji, H., Hada, M., Ogawa, S., et al., J. Phys., 1994, vol. 98, p. 11840.

    Google Scholar 

  9. Jin, R., Zhang, S.L., Zhang, Y.H., et al., Int. J., 2011, vol. 36, p. 9069.

    Google Scholar 

  10. Twigg, M.V., Appl. Catal., 2007, vol. 70, p. 2.

    Article  Google Scholar 

  11. Royer, S. and Duprez, D., Chem. Cat., 2011, vol. 3, p. 24.

    Google Scholar 

  12. Muetterties, E.L. and Stein, J., Chem. Rev., 1979, vol. 79, p. 479.

    Article  Google Scholar 

  13. Moskaleva, L.V., Zielasek, V., Kluener, D., et al., Chem. Phys., 2012, vol. 525, p. 87.

    Google Scholar 

  14. Wang, F., Zhang, D.J., and Ding, Y.J., J. Phys., 2010, vol. 114, p. 14076.

    Google Scholar 

  15. Nhat, P.V., Tai, T. B., and Nguyen, M.T., J. Chem. Phys., 2012, vol. 137, p. 164312.

    Article  Google Scholar 

  16. Negreirous, E.R., Sementa, L., Barcaro, G., et al., ACS Catal., 2012, vol. 2, p. 1860.

    Article  Google Scholar 

  17. Tatsumi, K., Nakamura, A., Hoffmann, P., et al., J. Am., 1985, vol. 107, p. 4440.

    Article  Google Scholar 

  18. Curtic, C.J. and Haltiwanger, R.C., Organometallics, 1991, vol. 10, p. 3220.

    Article  Google Scholar 

  19. Ellis, J.E., Frerichs, S.R., and Stein, B.K., Organometallics, 1993, vol. 12, p. 1048.

    Article  Google Scholar 

  20. Fryzuk, M.D., Mylvaganam, M., and MacGillivary, L.R., Organometallics, 1996, vol. 15, p. 1134.

    Article  Google Scholar 

  21. Jacoby, D., Floriani, C., Chiesi-Villa, A., and Rizzoli, C., J. Am., 1993, vol. 115, p. 7025.

    Article  Google Scholar 

  22. Guram, A.S., Guo, Z.Y., and Jordan, R.F., J. Am., 1993, vol. 115, p. 4902.

    Article  Google Scholar 

  23. Tan, H., Liao, M., and Balasubramanian, K., J. Phys., 1998, vol. 102, p. 1602.

    Google Scholar 

  24. Zhou, M.F. and Andrews, L., J. Am., 2000, vol. 122, p. 1531.

    Article  Google Scholar 

  25. Bürgel, C., Reilly, N.M., Johnson, G.E., et al., J. Am., 2008, vol. 130, p. 1694.

    Article  Google Scholar 

  26. Xie, Y., Dong, F., and Bernstein, E.R., Catal. Today, 2011, vol. 177, p. 64.

    Article  Google Scholar 

  27. Luo, Q., Li, Q.S., Yu, Z.H., et al., J. Am., 2008, vol. 130, p. 7756.

    Article  Google Scholar 

  28. Liu, C.Y, Tan, Y.Z, Lin, S.S., et al., J. Am., 2013, vol. 135, p. 2583.

    Article  Google Scholar 

  29. Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., Gaussian 09, Revision A.1, Wallingford: Gaussian, 2009.

    Google Scholar 

  30. Perdew, J.P., Burke, K., and Ernzerhof, M., Phys. Rev., 1996, vol. 77, p. 3865.

    Google Scholar 

  31. Morse, M.D., Chem. Rev., 1986, vol. 86, p. 1049.

    Article  Google Scholar 

  32. Amatore, C. and Jutand, A., J. Organomet., 1999, vol. 576, p. 254.

    Article  Google Scholar 

  33. Kozuch, S. and Shaik, S., Acc. Chem., 2011, vol. 44, p. 101.

    Article  Google Scholar 

  34. Kozuch, S., WIREs Comput. Mol. Sci., 2012, vol. 2, p. 279.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Guo.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., Guo, L. & An, X. Theoretical investigation of the CO oxidation on Al12Zr Cluster. Prot Met Phys Chem Surf 52, 16–23 (2016). https://doi.org/10.1134/S2070205116010159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116010159

Keywords

Navigation