Skip to main content
Log in

Certain characteristics of composite polytetrafluoroethylene-oxide coatings on aluminum alloy

  • New Substances, Materials, and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

We present the results of an investigation of the distribution of of elements according to cross-section morphology, adhesion, and anticorrosive properties of PTFE-oxide layers formed by plasma-electrolytic oxidation in an Na2SiO3 + NaOH electrolyte with dispersive particles of PTFE stabilized by siloxane acrylate emulsion. Coatings have a structure uncharacteristic of PEO layers. The main coating mass of thickness of up to 80 μm is composed of polytetrafluoroethylene and decomposition products of PTFE particles, as well as of the emulsion. The transition layer between the metal and polymer coating has a thickness of ∼10 μm and contains oxides of aluminum and silicon. Sample weight loss after ultrasonic treatment in water is ∼1%, which indicates a satisfactory adhesion of the coating to the metal and the cohesion between coating fragments. The coatings have a complex surface with pores several tens of microns in size. After annealing in air at 200°C, pores are filled with polymer, which is accompanied by a significant improvement in the coating’s anticorrosive properties. As a result of annealing in air at 400°C, the polymer coating sublimates and the transition layer with a thickness of ∼10–15 μm remains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mu, M., Zhou, Xj., and Xiao, Q., Appl. Surf. Sci., 2012, vol. 258, no. 22, pp. 8570–8576.

    Article  Google Scholar 

  2. Wu, Xh., Qin, W., Guo, Y., and Xie, Zy., Appl. Surf. Sci., 2008, vol. 254, no. 20, pp. 6395–6399.

    Article  Google Scholar 

  3. Martini, C., Ceschini, L., Tarterini, F., et al., Wear, 2010, vol. 269, nos 11–12, pp. 747–756.

    Article  Google Scholar 

  4. Fuks, S.L., Devyaterikova, S.V., and Khitrin, S.V., Rus. J. Appl. Chem., 2013, vol. 86, no. 6, pp. 848–852.

    Article  Google Scholar 

  5. Mandelli, A., Bestetti, M., Da, FornoA., et al., Surf. Coating. Techn, 2011, vol. 205, no. 19, pp. 4459–4465.

    Article  Google Scholar 

  6. Blawert, C., Sah, S.P., Liang, J., et al., Surf. Coat. Technol., 2012, vol. 213, pp. 48–58.

    Article  Google Scholar 

  7. Lamaka, S.V., Knoernschild, G., Snihirova, D.V., et al., Electrochem. Acta, 2009, vol. 55, no. 1, pp. 131–141.

    Article  Google Scholar 

  8. Lee, K.M., Ko, Y.G., and Shin, D.H., Curr. Appl. Phys., 2011, vol. 11, no. 4, pp. S55–S59.

    Article  Google Scholar 

  9. Lv, G.H., Chen, H., Gu, W.C., et al., Curr. Appl. Phys., 2009, vol. 9, no. 2, pp. 324–328.

    Article  Google Scholar 

  10. Bryuzgin, E.V., Takahashi, K., Navrotsky, A.V., et al., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 2, pp. 184–190.

    Article  Google Scholar 

  11. Xu, Q., Yang, Y., Wang, X., et al., J. Membr. Sci., 2012, vol. 415, pp. 435–443.

    Article  Google Scholar 

  12. Gnedenkov, S.V., Sinebryukhov, S.L., Mashtalyar, D.V., et al., Prot. Met., 2008, vol. 44, no. 7, pp. 704–709.

    Article  Google Scholar 

  13. Drelich, J., Chibowski, E., Meng, D.D., and Terpilowski, K., Soft Matter, 2011, vol. 7, no. 21, pp. 9804–9828.

    Article  Google Scholar 

  14. Suminov I.V., Epelfeld A.V., Lyudin V.B., Krit B.L., Borisov A.M. Microarc oxidation (theory, technology, equipment). M.:EKOMET, 2005. 368 s.

    Google Scholar 

  15. Rakoch, A.G., Dub, A.V., and Gladkova, A.A., Anodisation of light alloys at varying electrical regimes. Plasma-electrolytical nanotechnology, Moscow: Izd-vo “Staraya Basmannaya”, 2012. 496 s.

    Google Scholar 

  16. Gnedenkov, S.V., Sinebryukhov, S.L., and Sergienko, V.I., Composite multifunctional coatings formed on the metals and alloys by plasma electrolytic oxidation, Vladivostok: Dalnauka, 2013. 460 p.

    Google Scholar 

  17. Gruss, L.L. and McNeil, W., Electrochem. Technol., 1963, vol. 1, nos 9–10, pp. 283–287.

    Google Scholar 

  18. Saakiyan, L.S., Efremov, A.P., Epel’fel’d, A.V., et al., Fiz.-Khim. Mekh. Mater., 1987, no. 6, pp. 88–90.

    Google Scholar 

  19. Wang, Y., Jiang, Z., Liu, X., and Yao, Z., Applied Surface Science, 2009, vol. 255, pp. 8836–8840.

    Article  Google Scholar 

  20. Karpushenkov, S.A., Kulak, A.I., Shchukin, G.L., and Belanovich, A.L., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 4, pp. 463–468.

    Article  Google Scholar 

  21. Karpushenkov, S.A., Shchukin, G.L., Belanovich, A.L., et al., J. Appl. Electrochem., 2010, vol. 40, pp. 365–374.

    Article  Google Scholar 

  22. Rudnev, V.S., Vaganov-Vil’kins, A.A., Nedozorov, P.M., et al., Rus. J. Appl. Chem., 2012, vol. 85, no. 8. pp. 1147–1152.

    Article  Google Scholar 

  23. Rudnev, V.S., Vaganov-Vil’kins, A.A., Nedozorov, P.M., et al., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 1, pp. 87–94.

    Article  Google Scholar 

  24. Rudnev, V.S., Ustinov. A. Yu., Vaganov-Vil’kins A. A., et al., Rus. J. Phys. Chem. A, 2013, vol. 87, no. 6, pp. 1021–1026.

    Article  Google Scholar 

  25. Patent RF 2483144, Method for obtaining composite polymer-oxide coatings on valve metals and alloys / Rudnev V.S., Vaganov-Vil’kins A.A., Yarovaya T.P., Nedozorov P.M., published 27.05.2013, Bull. no. 15.

  26. Wang, W., Lin, C., and Tang, Z.G., J. Technol. (National Taiwan Univer. Sci. Techn.), 2010, vol. 10, pp. 65–67.

    Google Scholar 

  27. Banus, E.D. Ulla, M.A., et al., Appl. Catal. A-Gen., 2011, vol. 393, pp. 9–16.

    Article  Google Scholar 

  28. Cebollada, P.A.R. and Bordeje, E.G., Chem. Eng. J., 2009, vol. 149, pp. 447–454.

    Article  Google Scholar 

  29. Gordienko, P.S. and Rudnev, V.S., Electrochemical formation of coatings on aluminium and its alloys at spark and breakdown potentials, Vladivostok: Dal’nauka, 1999.

    Google Scholar 

  30. Pavlov, A.D., Sukhoverkhov, S.V., and Tsvetnikov, A.K., Vestnik DVO RAN, 2011, no. 5, pp. 72–75.

    Google Scholar 

  31. Lysenko, A.E., Rudnev, V.S., and Vaganov-Vil’kins, A.A., Korroziya: Materialy, zashchita, 2008, no. 3, pp. 25–29.

    Google Scholar 

  32. Pavlov, A.D., Sukhoverkhov, S.V., and Tsvetnikov, A.K., Vestnik DVO RAN, 2013, no. 5, pp. 39–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Rudnev.

Additional information

Original Russian Text © V.S. Rudnev, A.A. Vaganov-Vil’kins, A.K. Tsvetnikov, P.M. Nedozorov, T.P. Yarovaya, V.G. Kuryavy, E.E. Dmitrieva, E.A. Kirichenko, 2015, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2015, Vol. 51, No. 1, pp. 79–93.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudnev, V.S., Vaganov-Vil’kins, A.A., Tsvetnikov, A.K. et al. Certain characteristics of composite polytetrafluoroethylene-oxide coatings on aluminum alloy. Prot Met Phys Chem Surf 51, 112–126 (2015). https://doi.org/10.1134/S2070205115010128

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205115010128

Keywords

Navigation