Skip to main content
Log in

Modifying Zeolite ZSM-5 to Increase the Yield of Light Olefins in Cracking Feedstocks of Petroleum and Vegetable Origin

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The effect modifying the HZSM-5 zeolite contained in a bizeolite catalyst has on the conversion of hydrotreated vacuum gas oil, vegetable oil, and a vacuum gas oil–vegetable oil mixture under conditions of catalytic cracking is investigated. It is found that modification lowers both the specific surface area and the volume of the meso- and micropores of HZSM-5 zeolite; the higher the phosphorus content, the greater the reduction in the main characteristics of the pore structure of the zeolite. A drop in the total acidity of P/HZSM-5 and a quantitative redistribution of weak and medium-strength acid sites are also observed. Catalytic tests of the zeolites in the cracking process show that phosphorus modification helps increase the total yield of propane–propylene and butane–butylene fractions with high olefin contents. Alkaline treatment of HZSM-5 zeolite with a high SiO2/Al2O3 ratio facilitates the extraction of silicon and increases the specific surface area of mesopores considerably. In addition, weakening of the strong acid sites of the zeolite and/or a change in the accessibility of these sites due to the partial removal of silicon is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bortnovsky, O., Sazama, P., and Wichterlova, B., Appl. Catal., A, 2005, vol. 287, no. 2, pp. 203–213.

  2. Bezouhanova, C.P., Dimitrov, Chr., Nenova, V., Dimitrov, L., and Lechert, H., Appl. Catal., 1985, vol. 19, no. 1, pp. 101–108.

    Article  CAS  Google Scholar 

  3. Romero, M.D., Calles, J.A., Rodríguez, A., and de Lucas, A., Microporous Mater., 1997, vol. 9, nos. 5–6, pp. 221–228.

  4. Gao, X., Tang, Z., Zhang, H., Ji, D., Lu, G., Wang, Z., and Tan, Z., J. Mol. Catal. A: Chem., 2010, vol. 325, nos. 1–2, pp. 36–39.

  5. Blasco, T., Corma, A., and Martínez-Triguero, J., J. Catal., 2006, vol. 237, no. 2, pp. 267–277.

    Article  CAS  Google Scholar 

  6. Rahimi, N. and Karimzadeh, R., Appl. Catal., A, 2011, vol. 398, nos. 1–2, pp. 1–17.

  7. Ding, J., Wang, M., Peng, L., Xue, N., Wang, Y., and He, M.-Y., Appl. Catal., A, 2015, vol. 503, pp. 147–155.

  8. Altynkovich, E.O., Potapenko, O.V., Sorokina, T.P., Doronin, V.P., Gulyaeva, T.I., and Talzi, V.P., Pet. Chem., 2017, vol. 57, no. 3, pp. 215–221.

    Article  CAS  Google Scholar 

  9. Xue, N., Chen, X., Nie, L., Guo, X., Ding, W., Chen, Y., Gu, M., and Xie, Z., J. Catal., 2007, vol. 248, no. 1, pp. 20–28.

    Article  CAS  Google Scholar 

  10. Caeiro, G., Magnoux, P., Lopes, J.M., Ribeiro, F.R., Menezes, S.M.C., Costa, A.F., and Cerqueira, H.S., Appl. Catal., A, 2006, vol. 314, no. 2, pp. 160–171.

  11. Wang, X., Zhao, Z., Xu, C., Duan, A., Li, Z., and Guiyuan, J., J. Rare Earths, 2007, vol. 25, no. 3, pp. 321–328.

    Article  Google Scholar 

  12. Awayssa, O., Al-Yassir, N., Aitani, A., and Al-Khattaf, S., Appl. Catal., A, 2014, vol. 477, pp. 172–183.

  13. Lü, Q., Lin, X., Wang, L., Gao, J., and Bao, X., Catal. Commun., 2016, vol. 83, pp. 31–34.

    Article  CAS  Google Scholar 

  14. Han, D., Sun, N., Liu, J., Li, C., Shan, H., and Yang, C., J. Energy Chem., 2014, vol. 23, no. 4, pp. 519–526.

    Article  Google Scholar 

  15. Jung, J.S., Park, J.W., and Seo, G., Appl. Catal., A, 2005, vol. 288, nos. 1–2, pp. 149–157.

  16. Silaghi, M.-C., Chizallet, C., and Raybaud, P., Microporous Mesoporous Mater., 2014, vol. 191, pp. 82–96.

    Article  CAS  Google Scholar 

  17. Melero, J.A., Clavero, M.M., Calleja, G., García, A., Miravalles, R., and Galindo, T., Energy Fuels, 2010, vol. 24, no. 1, pp. 707–717.

    Article  CAS  Google Scholar 

  18. Bielansky, P., Weinert, A., Schönberger, C., and Reichhold, A., Fuel Process. Technol., 2011, vol. 92, no. 12, pp. 2305–2311.

    Article  CAS  Google Scholar 

  19. Shan, H., Liu, Y., Chen, X., and Yang, C., Shiyou Xuebao, Shiyou Jiagong/Acta Pet. Sin., Pet. Process. Sect., 2015, vol. 31, no. 2, pp. 460–467.

    CAS  Google Scholar 

  20. Lovás, P., Hudec, P., Hadvinová, M., and Ház, A., Fuel Process. Technol., 2015, vol. 134, pp. 223–230.

    Article  CAS  Google Scholar 

  21. Abbasov, V., Mammadova, T., Aliyeva, N., Abbasov, M., Movsumov, N., Joshi, A., Lvov, Y., and Abdullayev, E., Fuel, 2016, vol. 181, pp. 55–63.

    Article  CAS  Google Scholar 

  22. Doronin, V.P., Sorokina, T.P., Potapenko, O.V., Lipin, P.V., Dmitriev, K.I., Korotkova, N.V., and Gur’evskikh, S.Yu., Katal. Prom-sti, 2016, vol. 16, no. 6, pp. 69–74.

    Google Scholar 

  23. Doronin, V.P., Lipin, P.V., Potapenko, O.V., Zhuravlev, Ya.E., and Sorokina, T.P., Khim. Interes. Ust. Razv., 2017, vol. 25, no. 4, pp. 385–392.

    CAS  Google Scholar 

  24. Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption. Texture of Dispersed and Porous Materials), Novosibirsk: Nauka. Sib. Predpriyatie RAN, 1999.

    Google Scholar 

  25. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069.

  26. Zhu, X., Lobban, L.L., Mallinson, R.A., and Resasco, D.E., J. Catal., 2010, vol. 271, no. 1, pp. 88–98.

    Article  CAS  Google Scholar 

  27. Jiang, G., Zhang, L., Zhao, Z., Zhou, X., Duan, A., Xu, C., and Gao, J., Appl. Catal., A, 2008, vol. 340, no. 2, pp. 176–182.

  28. Guisnet, M., Gnep, N.S., Aittaleb, D., and Doyemet, Y.J., Appl. Catal., A, 1992, vol. 87, no. 2, pp. 255–270.

  29. Katikaneni, S.P.R., Adjaye, J.D., Idem, R.O., and Bakhshi, N.N., Ind. Eng. Chem. Res., 1996, vol. 35, no. 10, pp. 3332–3346.

    Article  CAS  Google Scholar 

  30. Benson, T.J., Hernandez, R., French, W.T., Alley, E.G., and Holmes, W.E., J. Mol. Catal. A: Chem., 2009, vol. 303, nos. 1–2, pp. 117–123.

  31. Ong, Y.K. and Bhatia, S., Energy, 2010, vol. 35, no. 1, pp. 111–119.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed as part of a State Task for the Institute of Hydrocarbon Processing, Siberian Branch, Russian Academy of Sciences under the Program for Basic Research of the State Academies of Sciences, 2013–2020, directive V.47, project no. V.47.1.3, state registration in the Unified State Information System for Recording the Results of Research and Development Works no. AAAA-A17-117021450099- 9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. P. Doronin, P. V. Lipin, O. V. Potapenko, V. V. Vysotskii, T. I. Gulyaeva or T. P. Sorokina.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doronin, V.P., Lipin, P.V., Potapenko, O.V. et al. Modifying Zeolite ZSM-5 to Increase the Yield of Light Olefins in Cracking Feedstocks of Petroleum and Vegetable Origin. Catal. Ind. 10, 335–343 (2018). https://doi.org/10.1134/S2070050418040050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050418040050

Keywords:

Navigation