Skip to main content
Log in

Using catalysts based on molybdenum and tungsten carbides in the water-gas shift reaction

  • General Problems of Catalysis
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Simagina, V.I., Milova, L.P., and Parmon, V.N., Metals in Commercial Catalysts: 1. Molybdenum and Tungsten, Catal. Ind., 2009, no. 4, p. 6.

  2. Széchenyi, A. and Solymosi, F., n-Octane Aromatization on Mo2C-Containing Catalysts, Appl. Catal., A, 2006, vol. 306, no. 1, p. 149.

    Google Scholar 

  3. Maméde, A.S., Giraudon, J.-M., Löfberg, A., Leclercq, L., and Leclercq, G., Hydrogenation of Toluene over β-Mo2C in the Presence of Thiophene, Appl. Catal., A, 2002, vol. 227, nos. 1–2, p. 73.

    Google Scholar 

  4. Solymosi, F. and Szoke, A., Conversion of Ethane into Benzene on Mo2C/ZSM-5 Catalyst, Appl. Catal., A, 1998, vol. 166, no. 1, p. 225.

    Article  CAS  Google Scholar 

  5. Xiang, M., Zou, J., Li, D., Li, W., Sun, Y., and She, X., Nickel and Potassium Co-Modified β-Mo2C Catalyst for CO Conversion, J. Nat. Gas Chem., 2009, vol. 18, no. 2, p. 183.

    Article  CAS  Google Scholar 

  6. Solymosi, F., Németh, R., and Oszkó, A., The Oxidative Dehydrogenation of Propane with CO2 Over Supported Mo2C Catalyst, Stud. Surf. Sci. Catal., 2001, vol. 136, p. 339.

    Article  CAS  Google Scholar 

  7. Ardakani, S.J., Liu, X., and Smith, K.J., Hydrogenation and Ring Opening of Naphthalene on Bulk and Supported Mo2C Catalysts, Appl. Catal., A, 2007, vol. 324, no. 1, p. 9.

    CAS  Google Scholar 

  8. Lin, S.S.-Y., Thomson, W.J., Hagensen, T.J., and Ha, S.Y., Steam Reforming of Methanol Using Supported Mo2C Catalysts, Appl. Catal., A, 2007, vol. 318, p. 121.

    Article  CAS  Google Scholar 

  9. Marin Flores, O.G. and Ha, S., Study of the Performance of Mo2C for iso-Octane Steam Reforming, Catal. Today, 2008, vol. 136, nos. 3–4, p. 235.

    Article  CAS  Google Scholar 

  10. Wang, J., Ji, Sh., Yang, J., Zhu, Q., and Li, S., Mo2C and Mo2C/Al2O3 Catalysts for NO Direct Decomposition, Catal. Commun., 2005, vol. 6, no. 6, p. 389.

    Article  CAS  Google Scholar 

  11. Oxley, J.D., Mdleleni, M.M., and Suslick, K.S., Hydrodehalogenation with Sonochemically Prepared Mo2C and W2C, Catal. Today, 2004, vol. 88, nos. 3–4, p. 139.

    Article  CAS  Google Scholar 

  12. Patt, J., Moon, D.J., Phillips, C., and Thompson, L., Molybdenum Carbide Catalyst for Water-Gas Shift, Catal. Lett., 2000, vol. 65, p. 193.

    Article  CAS  Google Scholar 

  13. Moon, D.J. and Rue, J.W., Molybdenum Carbide Water-Gas Shift Catalyst for Fuel Cell-Powered Vehicles Application, Catal. Lett., 2004, vol. 92, no. 1, p. 17.

    Article  CAS  Google Scholar 

  14. Oyama, S.T., Preparation and Catalytic Properties of Transition Metal Carbides and Nitrides, Catal. Today, 1992, vol. 15, no. 2, p. 179.

    Article  CAS  Google Scholar 

  15. York, A.P.E., Clarige, J.B., Marquez-Alvarez, C., Brungs, A.J., Tsang, S.C., and Green, M.L.H., Synthesis of Early Transition Metal Carbides and Their Application for the Reforming of Methane to Synthesis Gas, Stud. Surf. Sci. Catal., 1997, vol. 110, p. 711.

    Article  CAS  Google Scholar 

  16. Clarige, J.B., York, A.P.E., Brungs, A.J., Marquez-Alvares, C., Sloan, J., Tsang, S.C., and Green, M.L.H., New Catalysts for Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten Carbide, J. Catal., 1998, vol. 180, no. 1, p. 85.

    Article  Google Scholar 

  17. Faul, W. and Kastening, B., US Patent 4159309, 1979.

  18. Vreugdenhil, W., Sherif, F.G., Burk, J.H., and Gadberry, J.F., US Patent 5311161, 1993.

  19. Jacquot, R. and Mercier, C., US Patent 5646085, 1997.

  20. Becnel, B.F., Sabahi, M., and Theriot, K.J., US Patent 5907069, 1999.

  21. Sabahi, M., Teriot, K.J., and Becnel, B., WO Patent 9830528, 1998.

  22. Sherif, F.G., US Patent 5426252, 1995.

  23. Pavlov, D., Donchev, T.V., Nikolov, I.P., Nikolova, V.I., Papazov, G.P., and Petrov, K.M., US Patent 4925746, 1990.

  24. Baresel, D., Gellert, W., and Scharner, P., US Patent 3902917, 1975.

  25. Finch, J.N., US Patent 4219445, 1980.

  26. Finch, J.N., US Patent 4155928, 1979.

  27. Slaugh, L.H. and Hoxmeier, R.J., US Patent 4326992, 1982.

  28. Sherif, F.G. and Vreugdenhil, W., US Patent 5330944, 1994.

  29. Sherif, F.G., US Patent 0 569 084, 1993.

  30. Wu, A. and Drake, C.A., US Patent 5776852, 1998.

  31. Sherif, F.G., US Patent 5384027, 1995.

  32. Tonkovich, A., Vang I., and Vanderveil, D.P., RF Patent 2003126180, 2005.

  33. Drake, C.A. and Wu, A., US Patent 5965782, 1999.

  34. Gaffney, A.M., WO Patent 2001/0 128 679, 2001.

  35. Gaffney, A.M., WO Patent 2002/2 002 198 101, 2002.

  36. Seegopaul, P. and Gao, L., WO Patent 2002/02 076 885, 2004.

  37. Thompson, L., Patt, J., Moon, D.J., and Phillips, C., US Patent 6 623 720, 2003.

  38. Slaugh, L.H. and Hoxmeier, R.J., US Patent 4325842, 1982.

  39. Lee, J.S., Oyama, S.T., and Boudart, M., Molybdenum Carbide Catalysts: I. Synthesis of Unsupported Powders, J. Catal., 1987, vol. 106, p. 125.

    Article  CAS  Google Scholar 

  40. Li, S., Lee, J.S., Hyeon, T., and Suslick, K.S., Catalytic Hydrodenitrogenation of Indole over Molybdenum Nitride and Carbides with Different Structures, Appl. Catal., A, 1999, vol. 184, p. 1.

    Article  CAS  Google Scholar 

  41. Kojima, R. and Aika, K., Molybdenum Nitride and Carbide Catalysts for Ammonia Synthesis, Appl. Catal., A, 2001, vol. 219, p. 141.

    Article  CAS  Google Scholar 

  42. Moon, D.J. and Woo, R.J., Molybdenum Carbide Water-Gas Shift Catalyst for Fuel Cell-Powered Vehicles Applications, Catal. Lett., 2004, vol. 92, p. 1.

    Article  Google Scholar 

  43. Moon, D.J., Screekumar, K., Lee, S.D., Lee, B.G., and Kim, H.S., Studies on Gasoline Fuel Processor System for Fuel-Cell Powered Vehicles Application, Appl. Catal., A, 2001, vol. 215, p. 1.

    Article  CAS  Google Scholar 

  44. Patt, J., Moon, D.J., Phillips, C., and Thomson, L., Molybdenum Carbide Catalysts for Water-Gas Shift, Catal. Lett., 2000, vol. 65, p. 193.

    Article  CAS  Google Scholar 

  45. Oyama, S.T., Charles, Y.C., and Ramanathan, S., Transition Metal Bimetallic Oxycarbides: Synthesis, Characterization, and Activity Studies, J. Catal., 1999, vol. 184, p. 535.

    Article  CAS  Google Scholar 

  46. Volpe, L. and Boudart, M., Compounds of Molybdenum and Tungsten with High Specific Surface Area, J. Solid State Chem., 1985, vol. 59, p. 348.

    Article  CAS  Google Scholar 

  47. Manoli, J.-M., Da Costa, P., Brun, M., Vrinat, M., Maugé, F., and Potvin, C., Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over Promoted (Ni, P) Alumina-Supported Molybdenum Carbide Catalysts: Activity and Characterization of Active Sites, J. Catal., 2004, vol. 221, p. 365.

    Article  CAS  Google Scholar 

  48. Wang, X.H., Hao, H.L., Zhang, M.H., Li, W., and Tao, K.Y., Synthesis and Characterization of Molybdenum Carbides Using Propane as Carbon Source, J. Solid State Chem., 2006, vol. 179, p. 538.

    Article  CAS  Google Scholar 

  49. Slaugh, L.H. and Hoxmeier, R.J., US Patent 4325843, 1982.

  50. Boudart, M. and Oyama, S., US Patent 4 851 206, 1989.

  51. Hyeon, T., Fang, M., and Suslick, K.S., Nanostructured Molybdenum Carbide: Sonochemical Synthesis and Catalytic Properties, J. Am. Chem. Soc., 1996, vol. 118, p. 5492.

    Article  CAS  Google Scholar 

  52. Roman, P., Luque, A., and Aranzabe, A., Synthesis of Oxides, Oxocarbides and Carbides of Molybdenum by Thermal Decomposition of Diethylenetriamine Oxomolybdenum Compounds, Thermochim. Acta, 1993, vol. 223, p. 167.

    Article  CAS  Google Scholar 

  53. Gu, Y., Li, Z., Chen, L., Ying, Y., and Qian, Y., Synthesis of Nanocrystalline Mo2C via Sodium Co-Reduction of MoCl5 and CBr4 in Benzene, Mater. Res. Bull., 2003, vol. 38, p. 1119.

    Article  CAS  Google Scholar 

  54. Lu, J., Hugosson, H., Eriksson, O., Nordstrom, L., and Jansson, U., Chemical Vapour Deposition of Molybdenum Carbides: Aspects of Phase Stability, Thin Solid Films, 2000, vol. 370, p. 203.

    Article  CAS  Google Scholar 

  55. Monteverdi, S., Mercy, M., Molina, S., Bettahar, M.M., Puricelli, S., Be’gin, D., Maréché, F., and Furdin, F., Study of Unsupported and Active Carbon Supported β-Mo2C Prepared from MoCl5 Precursor, Appl. Catal., A, 2002, vol. 230, p. 99.

    Article  CAS  Google Scholar 

  56. Weigert, E.C., South, J., Rykov, S.A., and Chen, J.G., Multifunctional Composites Containing Molybdenum Carbides as Potential Electrocatalysts, Catal. Today, 2005, vol. 99, p. 285.

    Article  CAS  Google Scholar 

  57. Shapoval, V.I., Malyshev, V.V., Novoselova, I.N., and Kushkhov, Kh.B., Current Problems of the Electrochemical Synthesis of Group IV-VI Transition Metal Compounds, Usp. Khim., 1995, vol. 64, no. 2, p. 133.

    CAS  Google Scholar 

  58. Gurin, V.N., Synthesis Methods for Refractory Compounds of Transition Metals and Their Development Prospects, Usp. Khim., 1972, vol. 41, p. 616.

    CAS  Google Scholar 

  59. Hoschowa, K., J. Jpn. Soc. Heat Treat., 1980, vol. 20, p. 130.

    Google Scholar 

  60. Arai, T., Sugimoto, Y., and Komatsu, N., Carbide Coating and Boriding of Chromium-Plated Steel by Immersion Process in Fused Borax Bath, J. Met. Finish. Soc. Jpn., 1981, vol. 32, p. 240.

    Article  CAS  Google Scholar 

  61. Andrieux, J.L. and Weiss, G., Making Compounds of Molybdenum and of Tungsten by Electrolysis of Melts, Bull. Soc. Chim. Fr., 1948, vol. 15, p. 598.

    Google Scholar 

  62. Gomes, J. M., Baker, D.H., and Uchida, K., US Patent 3 589 987, 1971.

  63. Suri, A.K., Musherjee, T.K., and Cupta, C.K., Molybdenum Carbide by Electrolysis of Sodium Molybdate, J. Electrochem. Soc., 1973, vol. 120, no. 5, p. 622.

    Article  CAS  Google Scholar 

  64. Barlett, H.E. and Johnson, K.E., Electrochemical Studies in Molten Li2CO3-Na2CO3, J. Electrochem. Soc., 1967, vol. 114, no. 5, p. 457.

    Article  Google Scholar 

  65. Delimarskii, Yu.K., Grishchenko, V.F., and Gorodyskii, A.V., A Study of the Reactions Occurring during the Electrolysis of Molten Carbonates, Ukr. Khim. Zh., 1965, vol. 31, no. 1, p. 32.

    CAS  Google Scholar 

  66. Rebrov, E.V., Kuznetsov, S.A., de Croon, M.H.J.M., and Schouten, J.C., Study of the Water-Gas Shift Reaction on Mo2C/Mo Catalytic Coatings for Application in Microstructured Fuel Processors, Catal. Today, 2007, vol. 125, nos. 1–2, p. 88.

    Article  CAS  Google Scholar 

  67. Kuznetsov, S.A., Dubrovskiy, A.R., Rebrov, E.V., and Schouten, J.C., Electrochemical Synthesis of Mo2C Catalytical Coatings for the Water-Gas Shift Reaction, Z. Naturforsch., A: Phys. Sci., 2007, vol. 62, nos. 10–11, p. 647.

    CAS  Google Scholar 

  68. Dubrovskii, A.R., Kuznetsov, S.A., Rebrov, E.V., and Schouten, J.C., Catalytic Mo2C Coatings for the Water Gas Shift Reaction: Electrosynthesis in Molten Salts, Kinet. Catal., 2008, vol. 49, no. 4, p. 594.

    Article  CAS  Google Scholar 

  69. Dubrovskii, A.R., Kuznetsov, S.A., Rebrov, E.V., Schouten, J.C., and Kalinnikov, V.T., Synthesis of Mo2C Coatings by Simultaneous Electroreduction of and Ions in Molten Salts and Their Catalytic Activity for the Water-Gas Shift Reaction, Dokl. Chem., 2008, vol. 421,part 2, p. 186.

    Article  Google Scholar 

  70. Dubrovskiy, A.R., Rebrov, E.V., Kuznetsov, S.A., and Schouten, J.C., A Microstructured Reactor/Heat-Exchanger for the Water-Gas Shift Reaction Operated in the 533–673 K Range, Catal. Today, 2009, vol. 147,suppl. 1, p. 198.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Semin.

Additional information

Original Russian Text © G.L. Semin, A.R. Dubrovskii, P.V. Snytnikov, S.A. Kuznetsov, V.A. Sobyanin, 2011, published in Kataliz v Promyshlennosti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semin, G.L., Dubrovskii, A.R., Snytnikov, P.V. et al. Using catalysts based on molybdenum and tungsten carbides in the water-gas shift reaction. Catal. Ind. 4, 59–66 (2012). https://doi.org/10.1134/S2070050412010102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050412010102

Keywords

Navigation