Skip to main content
Log in

Using GPUs for solving problems of combustion and physicochemical transformations

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The goal of this work is to study the applicability of modern GPUs for the computation of combustion and detonation problems for a nonstationary regime. The capacity of the graphics card and universal processors connected in parallel for solving problems of detonation initiation is compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Kee, F. M. Rupley, J. A. Miller, et al., “Chemkin: a softare package for the analysis of gas-phase chemical and plasma kinetics,” Chemkin Collection, Release 3.6 (Reaction Design, San Diego, CA, USA, 2000).

    Google Scholar 

  2. N. M. Marinov, W. J. Pitz, C. K. Westbrook, M. Hori, and N. A. Matsunaga, “Experimental and kinetic calculation of the promotion effect of hydrocarbons on the NO-NO2 conversion in a flow reactor,” Proc. Combust. Inst. 27, 389–396 (1998).

    Article  Google Scholar 

  3. R. J. Kee, J. A. Miller, and T. H. Jefferson, “Chemkin: a general-purpose, problem-independent, transportable Fortran chemical kinetics code package,” Sandia National Laboratories Report SAND80-8003 (Sandia Natl. Laboratories, Albuquerque, NM, Livermore, CA, 1980).

    Google Scholar 

  4. S. Browne, J. Ziegler, and J. E. Shepherd, “Numerical solution methods for shock and detonation jump conditions,” GALCIT Report FM2006.006 (California Inst. Technol., Pasadena, CA, USA, 2008).

    Google Scholar 

  5. S. Gordon and B. J. McBride, “Computer program for calculation of complex chemical equilibrium compositions and applications I. Analysis,” NASA RP-1311 (NASA Lewis Res. Center, Washington, USA, 1994).

    Google Scholar 

  6. Z. G. Pozdnyakov and B. D. Possi, Handbook on Industrial Explosives and Means of Blasting (Nedra, Moscow, 1977) [in Russian].

    Google Scholar 

  7. E. Yu. Orlova, Chemistry and Technology of Brizant Substances, School-Book for Higher Schools, 3rd ed. (Khimiya, Leningrad, 1981) [in Russian].

    Google Scholar 

  8. U. Maas and J. Warnatz, “Ignition process in hydrogen-oxygen mixtures,” Combust. Flame 74, 53–69 (1988).

    Article  Google Scholar 

  9. U. Maas and S. B. Pope, “Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space,” Combust. Flame 88, 239–264 (1992).

    Article  Google Scholar 

  10. J. Li, Z. Zhao, A. Kazakov, and F. L. Dryer, “An updated comprehensive kinetic model of hydrogen combustion,” Int. J. Chem. Kinet. 36, 566–575 (2004).

    Article  Google Scholar 

  11. Z. Hong, “An improved hydrogen/oxygen mechanism based on shock tube/laser absorption measurements,” PhD Dissertation (Stanford Univ., CA, USA, California, 2010).

    Google Scholar 

  12. N. N. Smirnov and V. F. Nikitin, “Modeling and simulation of hydrogen combustion in engines,” Int. J. Hydrogen Energy 39, 1122–1136 (2014).

    Article  Google Scholar 

  13. N. N. Smirnov, Yu. G. Phylippov, V. F. Nikitin, and M. V. Silnikov, “Modeling of combustion in engines fed by hydrogen,” WSEAS Trans. Fluid Mech. 9, 154–167 (2014).

    Google Scholar 

  14. NVIDIA CUDA, Programming Guide (2014). http://developer.nvidia.com/cuda-downloads.

  15. V. Leer and B. Towards, “The ultimate conservative difference scheme. A second order sequel to Godunov’s method,” J. Comput. Phys. 32, 101–136 (1979).

    Article  MATH  Google Scholar 

  16. M.-S. Liou, “A sequel to AUSM: AUSM+,” J. Comput. Phys. 129, 364–382 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  17. G.-S. Jiang and E. Tadmor, “Nonoscillatory central schemes for multidimensional hyperbolic conservation laws,” SIAM J. Sci. Comput. 19, 1892–1917 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  18. H. Nessyahu and E. Tadmor, “Non-oscillatory central differencing for hyperbolic conservation laws,” J. Comput. Phys. 87, 408–463 (1990).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Tyurenkova.

Additional information

Original Russian Text © V.B. Betelin, V.F. Nikitin, N.N. Smirnov, M.N. Smirnova, L.I. Stamov, V.V. Tyurenkova, 2017, published in Matematicheskoe Modelirovanie, 2017, Vol. 29, No. 4, pp. 3–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Betelin, V.B., Nikitin, V.F., Smirnov, N.N. et al. Using GPUs for solving problems of combustion and physicochemical transformations. Math Models Comput Simul 9, 727–741 (2017). https://doi.org/10.1134/S2070048217060059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048217060059

Keywords

Navigation