Skip to main content
Log in

Numerical modeling of a pinch in a vacuum diode with laser ignition

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The present paper is concerned with the mathematical model and methods of numerical analysis of processes in plasma created in a vacuum chamber by means of a discharge initiated on a cathode by a pulsed laser. The model is capable of describing in a two-dimensional approximation the formation of a plume’ of laser plasma and the magneto-hydrodynamic effects (pinching, etc.) due to the current in the plasma. The results of the first numerical experiments with this model are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Haseroth and E. Hill, Rev. Sci. Instrum. 67, 1328 (1996).

    Article  Google Scholar 

  2. K. N. Koshelev, V. E. Banin, and N. N. Salashchenko, “Research and development in short-wave radiation sources for new-generation lithography,” Phys. Usp. 50, 741–744 (2007). doi 10.1070/PU2007v050n07ABEH006321

    Google Scholar 

  3. I. V. Romanov, A. A. Rupasov, A. S. Shikanov, V. L. Paperny, et al., J. Phys. D: Appl. Phys. 43, 035201 (2010).

    Article  Google Scholar 

  4. I. V. Romanov, V. L. Papernyi, Yu. V. Korobkin, N. G. Kiselev, A. A. Rupasov, and A. S. Shikanov, “Influence of laser pulse parameters on characteristics of a source of multicharged metal ions based on laser-induced medium-power spark discharge,” Tech. Phys. Lett. 39, 388 (2013).

    Article  Google Scholar 

  5. S. I. Braginskii, “Transport processes in a plasma,” in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965; Atomizdat, Moscow, 1964), Vol. 1, p. 205.

    Google Scholar 

  6. V. B. Baranov and K. V. Krasnobaev, Hydrodynamical Theory of Cosmic Plasma (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  7. A. F. Nikiforov, V. G. Novikov, and V. B. Uvarov, Quantum-Statistical Models of Hot Dense Matter: Methods for Computation Opacity and Equation of State (Fizmatlit, Moscow, 2000; Springer, New York, 2006).

    MATH  Google Scholar 

  8. A. A. Esaulov and P. V. Sasorov, “Two-dimensional dynamics of a high-temperature magnetized plasma in plasma switches,” Plasma Phys. Rep. 23, 576–586 (1997). doi 101134/1952482

    Google Scholar 

  9. I. G. Lebo and V. F. Tishkin, A Study of Hydrodynamic Instability in the Problems of Laser Thermonuclear Synthesis by the Methods of Mathematical Modeling (Fizmatlit, Moscow, 2006), p. 304 [in Russian].

    Google Scholar 

  10. I. P. Tsygvintsev, A. Yu. Krukovskii, V. G. Novikov, and I. V. Popov, “Three-dimensional modeling of the laser radiation absorption in the geometrical optics approximation,” KIAM Preprint No. 41 (Keldysh Inst. Appl. Math., Moscow, 2012).

    Google Scholar 

  11. R. Fedosejevs, R. Ottmann, R. Sigel, G. Künle, S. Szatmari and F. P. Schäfer, Phys. Rev. Lett. 64, 1250–1253 (1990).

    Article  Google Scholar 

  12. E. A. Zverev, V. I. Krasov, I. A. Krinberg, and V. L. Paperny, “Formation of a micropinch and generation of multiply charged ions at the front of a current-carrying plasma jet,” Plasma Phys. Rep. 31, 843–854 (2005).

    Article  Google Scholar 

  13. G. A. Mesyats and S. A. Barengol’ts, “Mechanism of anomalous ion generation in vacuum arcs,” Phys. Usp. 45, 1001–1018 (2002). doi 10.1070/PU2002v045n10ABEH001247

    Article  Google Scholar 

  14. S. V. Zakharov, P. Choi, C. Dumitresch, A. Yu. Krukovskiy, V. G. Novikov, and K. D. Ware, “Performance evaluation on discharge and laser based EUV source using Z* 2D radiation MHD simulation,” in Proceedings of the Extreme Ultra-Violet Lithography EUVL Source Workshop, Feb. 23, 2003, Santa Clara, CA, USA.

    Google Scholar 

  15. V. A. Gasilov, S. Yu. Guskov, S. V. Zakharov, A. Yu. Krukovskii, T. P. Novikova, A. A. Otochin, and V. B. Rozanov, “Mathematical modeling of magnetized plasma dynamics with inner ablation in cylinder cavity,” IMM Preprint No. 11 (Inst. Math. Model. RAS, Moscow, 1995).

    Google Scholar 

  16. V. A. Gasilov, S. Yu. Guskov, S. V. Zakharov, A. Yu. Krukovskii, A. A. Otochin, and V. B. Rozanov, “Numerical modeling of plasma flows in the inner cavities of laser thermonuclear flows,” J. Russ. Laser Res. 18 (60), 515–528 (1997).

    Google Scholar 

  17. B. Benattar, V. A. Gasilov, A. Yu. Krukovskiy, P. Ney, A. Nikitin, A. F. Nikiforov, V. G. Novikov, A. A. Otochin, V. K. Rocrich, A. D. Solomyannaya, A. N. Starostin, A. E. Stepanov, and S. V. Zakharov, “Implosion dynamics of a radiative composite Z-pinch,” IEEE Trans. Plasma Sci. 26, 1210–1223 (1998).

    Article  Google Scholar 

  18. B. Benattar, V. A. Gasilov, A. Yu. Krukovskiy, A. F. Nikiforov, V. G. Novikov, S. V. Zakharov, and V. S. Zakharov, “Influence of magnetohydrodynamic Rayleigh-Taylor instability on radiation of imploded heavy ion plasmas,” Phys. Plasmas 6, 175–187 (1999).

    Article  MathSciNet  Google Scholar 

  19. V. A. Gasilov, S. Yu. Guskov, S. V. Zakharov, A. Yu. Krukovskii, T. P. Novikova, and V. B. Rozanov, “Numerical modeling of nonlinear heat conductivity and radiation gas dynamics processes with the implosion of matter in the inner cavities of the LTS target,” PIAS Preprint No. 30 (Phys. Inst. Acad. Sci., Moscow, 1999).

    Google Scholar 

  20. A. V. Branitskii, E. V. Grabovskii, S. V. Zakharov, N. V. Zurin, A. Yu. Krukovskii, T. N. Oleinik, V. P. Smirnov, and I. N. Frolov, “Penetration of an azimuthal magnetic flux during the implosion of a double liner,” Plasma Phys. Rep. 25, 994 (1999).

    Google Scholar 

  21. V. A. Gasilov, S. Yu. Guskov, A. Yu. Krukovskiy, T. P. Novikova, and V. B. Rozanov, “Numerical simulation of plasma implosion due to radiation heating of the inlet hole walls of hohlraum target,” J. Russ. Laser Res. 21, 465–473 (2000).

    Article  Google Scholar 

  22. P. Choi, A. Yu. Krukovskiy, V. G. Novikov, and S. V. Zakharov, “Xenon emission of dense plasma focus,” in Proceedings of the 10th International Workshop on Radiative Properties of Hot Dense Matter, Saint-Malo, France, 2002.

    Google Scholar 

  23. V. A. Gasilov, A. S. Chuvatin, A. Yu. Krukovskii, E. A. Kartasheva, O. G. Ol’khovskaya, A. S. Boldarev, D. S. Tarasov, N. V. Serova, S. V. D’yachenko, and O. V. Fryazinov, “A program package “Razryad”: modeling of plasma acceleration in pulsed-power systems,” Mat. Model. 15 (9), 107–124 (2003).

    MATH  Google Scholar 

  24. A. A. Samarskii and Yu. P. Popov, Difference Methods for Solving Problems in Gas Dynamics (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  25. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatlit, Moscow, 2008; Academic Press, New York, 1966).

    Google Scholar 

  26. Yu. V. Korobkin, A. I. Lebo, and I. G. Lebo, “Investigation of the foreplasma parameters of a laser-plasma diode,” Quantum Electron. 40, 811–816 (2010).

    Article  Google Scholar 

  27. Yu. V. Korobkin, A. I. Lebo, I. G. Lebo, and I. V. Romanov, “Investigation of pinch stabilization of the plasma in vacuum laser-induced spark discharge cathode jet,” Nauch. Vestn. MIREA, No. 1 (13) (2013).

    Google Scholar 

  28. A. Russell Burdt et al., “Experimental scaling law for mass ablation rate from a Sn plasma generated by a 1064 nm laser,” J. Appl. Phys. 106, 033310 (2009). doi 10.1063/1.3190537

    Article  Google Scholar 

  29. N. G. Basov, O. N. Krokhin, and G. V. Sklizkov, “Investigation of dynamics and heating and expansion of plasma created by laser radiation focused onto the substance,” Tr. FIAN 52, 171 (1970).

    Google Scholar 

  30. O. M. Belotserkovskii, V. V. Demchenko, V. I. Kosarev, and A. S. Kholodov, “Numerical simulation of some problems of laser compression of shells,” USSR Comput. Math. Math. Phys. 18, 117 (1978).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Tsygvintsev.

Additional information

Original Russian Text © I.P. Tsygvintsev, A.Yu. Krukovskiy, V.A. Gasilov, V.G. Novikov, I.V. Romanov, V.L. Paperny, A.A. Rupasov, 2016, published in Matematicheskoe Modelirovanie, 2016, Vol. 28, No. 2, pp. 146–160.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsygvintsev, I.P., Krukovskiy, A.Y., Gasilov, V.A. et al. Numerical modeling of a pinch in a vacuum diode with laser ignition. Math Models Comput Simul 8, 595–605 (2016). https://doi.org/10.1134/S2070048216050136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048216050136

Keywords

Navigation