Skip to main content
Log in

Genetic diversity of bacteria adapted to cyanide-bearing compounds in the technogenic ecosystems as detected by 16S rDNA sequences

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

The genetic diversity of microbial communities that developed naturally within the system of ore heap–solution of heap leaching process has been studied. The difference in the microbial community structure is identified. It is found that phylotypes Serratia and Achromobacter dominated within the ore heap and Hydrogenophaga and Acinetobacter dominated in the solution. Phylogenetic analyses revealed that there are microorganisms among the closest homologues that are able to destruct toxic compounds and/or exhibit their enzyme activity at low temperature. It is shown that aerobic organoheterotrophs are the most promising for the isolation from autochthonous microbial communities of technogenic complexes in East Siberia, as well for studying their destructive potential and use in bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ajithkumar, B., Ajithkumar, V.P., Iriye, R., Doi, Y., and Sakai, T., Spore-forming Serratia marcescens subsp. sakuensis subsp. nov., isolated from a domestic wastewater treatment tank, Int. J. Syst. Evol. Microbiol., 2003, vol. 53, pp. 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Baxter, J. and Cummings, S.P., The current and future applications of microorganism in the bioremediation of cyanide contamination, Anton Leeuw Int. J., 2006, no. 1, pp. 1–17.

    Article  Google Scholar 

  • Belkova, N.L. and Andreeva, A.M., Vvedenie v molekulyarnuyu ekologiyu mikroorganizamov (The Introduction into Molecular Ecology of Microorganisms), Yaroslavl: Printkhaus, 2009.

    Google Scholar 

  • Belykh, M.P., Petrov, S.V., Chikin, A.Yu., Stoyanov, I.N., and Belkova, N.L., Autochtonous microbial communities from gold-bearing ores heap leaching wastes: the way to solve the problem on environmental pollution, Izv. Isrkutsk. Gos. Univ., Ser.: Biol. Ekol., 2014, vol. 9, pp. 55–67.

    Google Scholar 

  • Bergey’s Manual of Systematic Bacteriology. The Proteobacteria, Brenner, D.J. and Krieg, N.R., Eds., New York: Springer-Verlag, 2005, vol. 2.

  • Bergey’s Manual of Systematic Bacteriology. The Firmicutes, Vos, P., Garrity, G., Jones, D., Krieg, N.R., Ludwig, W., Eds., New York: Springer-Verlag, 2009, vol. 3.

  • Brodie, E.L., DeSantis, T.Z., Joyner, D.C., Baek, S.M., Larsen, J.T., Andersen, G.L., Hazen, T.C., Richardson, P.M., Herman, D.J., Tokunaga, T.K., Wan, J.M., and Firestone, M.K., Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation, Appl. Environ. Microbiol., 2006, vol. 72, no. 9, pp. 6288–6298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins, M.D., Lund, B.M., Farrow, J.A.E., and Schleiref, K.H., Chemotaxonomic study of an alkalophilic bacterium, Exiguobacterium aurantiacum gen. nov., sp. nov., J. Gen. Microbiol., 1983, vol. 129, pp. 2037–2042.

    CAS  Google Scholar 

  • Grigor’eva, N.V., Smirnova, Yu.V., Terekhova, S.V., and Karavaiko, G.I., Isolation of an aboriginal bacterial community capable of utilizing cyanide, thiocyanate, and ammonia from metallurgical plant wastewater, Appl. Biochem. Microbiol., 2008, vol. 44, no. 5, pp. 502–506.

    Article  Google Scholar 

  • Harris, R. and Knowles, C.J., Isolation and growth of a Pseudomonas species that utilizes cyanide as a source of nitrogen, J. Gen. Microbiol., 1983, vol. 129, pp. 1005–1011.

    CAS  PubMed  Google Scholar 

  • Ji, L.Y., Zhang, W.W., Yu, D., Cao, Y.R., and Xu, H., Effect of heavy metal-solubilizing microorganisms on zinc and cadmium extractions from heavy metal contaminated soil with Tricholoma lobynsis, World J. Microbiol. Biotechnol., 2012, vol. 28, no. 1, pp. 293–301.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, V., Kumar, V., and Bhalla, T.C., In vitro cyanide degradation by Serretia marcescens RL2b, Int. J. Environ. Sci., 2013, vol. 3, no. 6, pp. 1969–1979.

    Google Scholar 

  • Maniyam, M.N., Sjahrir, F., and Ibrahim, A.L., Bioremediation of cyanide by optimized resting cells of Rhodococcus strains isolated from Peninsular Malaysia, Int. J. Biosci. Biotechnol. Biochem., 2011, vol. 1, no. 2, pp. 98–101.

    Google Scholar 

  • Mirizadeh, S., Yaghmaei, S., and Ghobadi Nejad, Z., Biodegradation of cyanide by a new isolated strain under alkaline conditions and optimization by response surface methodology (RSM), J. Environ. Health Sci. Eng., 2014, vol. 12, no. 85, pp. 1–9.

    Google Scholar 

  • Nekrasov, B.V., Osnovy obshchei khimii (Fundamentals of General Chemistry), Nekrasov, B.V., Ed., Moscow: Khimiya, 1973, vol. 2.

  • Nishimura, Y., Ino, T., and Iizuka, H., Acinetobacter radioresistens sp. nov. isolated from cotton and soil, Int. J. Syst. Bacteriol., 1988, vol. 38, pp. 209–211.

    Article  Google Scholar 

  • Perumal, M., Prabakaran, J.J., and Kamaraj, M., Isolation and characterization of potential cyanide degrading Bacillus nealsonii from different industrial effluents, Int. J. Chem. Tech. Res., 2013, vol. 5, no. 5, pp. 2357–2364.

    CAS  Google Scholar 

  • Petrova, S., Andronov, E., Pinaev, A., and Pershina, E., The prospective use of molecular and genetic analyses in soil ecology, Vestn. Orlovsk. Gos. Agrar. Univ., 2010, vol. 26, no. 5, pp. 45–48.

    Google Scholar 

  • Pinevich, A.V., Mikrobiologiya. Biologiya prokariotov (Microbiology. Biology of Prokaryotes), Pinevich, A.V., Eds., St. Petersburg: S.-Peterb. Gos. Univ., 2006, vol. 1.

  • Spring, S., Wagner, M., Schumann, P., and Kämpfer, P., Malikia granosa gen. nov.,sp. nov.,a novel polyhydroxyalkanoate- and polyphosphate-accumulating bacterium isolated from activated sludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb. nov., Int. J. Syst. Evol. Microbiol., 2005, vol. 55, pp. 621–629.

    Article  CAS  PubMed  Google Scholar 

  • Thomassin-Lacroix, E.J., Yu, Z., Eriksson, M., Reimer, K.J., and Mohn, W.W., DNA-based and culture- based characterization of a hydrocarbon-degrading consortium enriched from Arctic soil, Can. J. Microbiol., 2001, vol. 47, no. 12, pp. 1107–1115.

    Article  CAS  PubMed  Google Scholar 

  • Vandammea, P., Moore, E. R.B., Cnockaert, M., Peeters, Ch., Svensson-Stadler, L., Houf, K., Spilker, T., and LiPuma, J.J., Classification of Achromobacter genogroups 2,5,7 and 14 as Achromobacter insuavis sp. nov.,Achromobacter aegrifaciens sp. nov.,Achromobacter anxifer sp. nov. and Achromobacter dolens sp. nov.,respectively, Syst. Appl. Microbiol., 2013, vol. 36, no. 7, pp. 474–482.

    Article  Google Scholar 

  • Willems, A., Busse, J., Goor, M., Pot, B., Falsen, E., Jantzen, E., Hoste, B., Gillis, M., Kersters, K., Auling, G., and Ley, Y J.D., Hydrogenophaga, a new genus of hydrogen-oxidizing bacteria that includes Hydrogenophaga flava comb. nov. (formerly Pseudomonas flava), Hydrogenophaga palleronii (formerly Pseudomonas palleronii), Hydrogenophaga pseudoflava (formerly Pseudomonas pseudoflava and “Pseudomonas carboxydoflava”), and Hydrogenophaga taeniospiralis (formerly Pseudomonas taeniospiralis), Int. J. Syst. Evol. Microbiol., 1989, vol. 39, no. 3, pp. 319–333.

    CAS  Google Scholar 

  • Wood, A.P., Kelly, D.P., McDonald, I.R., Jordan, S.L., Morgan, T.D., Khan, S., Murrell, J.C., and Borodina, E., A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources, Arch. Microbiol., 1998, vol. 169, no. 2, pp. 148–158.

    CAS  PubMed  Google Scholar 

  • Yoon, J.H., Kang, S.J., Ryu, S.H., Jeon, Ch. O., and Oh, T.K., Hydrogenophaga bisanensis sp. nov., isolated from wastewater of a textile dye works, Int. J. Syst. Evol. Microbiol., 2008, vol. 58, pp. 393–397.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Jia, L., Wang, S., Qu, J., Li, K., Xu, L., Shi, Y., and Yan, Y., Biodegradation of beta-cypermethrin by two Serratia spp. with different cell surface hydrophobicity, Bioresour. Technol., 2010, vol. 101, no. 10, pp. 3423–3429.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Belykh.

Additional information

Original Russian Text © M.P. Belykh, S.V. Petrov, A.Ju. Chikin, N.L. Belkova, 2016, published in Sibirskii Ekologicheskii Zhurnal, 2016, No. 5, pp. 684–696.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belykh, M.P., Petrov, S.V., Chikin, A.J. et al. Genetic diversity of bacteria adapted to cyanide-bearing compounds in the technogenic ecosystems as detected by 16S rDNA sequences. Contemp. Probl. Ecol. 9, 563–573 (2016). https://doi.org/10.1134/S1995425516050012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425516050012

Keywords

Navigation