Skip to main content
Log in

The Novel Generally Described Graphs for Cyclic Orthogonal Double Covers of Some Circulants

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Circulant graphs nowadays have a vast number of important applications due to the tremendous developments in modern technologies. Interconnection networks are always designed in the form of graphs in which the vertices and edges represent the nodes and links respectively. The circulant graphs that have maximum connectivity edges are called complete graphs. The Cyclic Orthogonal Double Covers (CODC) is a special class of circulant graph decomposition. Many studies proved the existence of CODC by one generating graph. In this paper, the constructing CODCs of complete graphs by copying joint and disjoint unions of new generally described graphs is presented. We consider the use cases of applying the described theory to some problems in various engineering applications. Decomposition of the enormous circulant or complete graphs by copies of disjoint generators enables us to analyze large networks as a set of small networks so that the information is accessed in a fast way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

REFERENCES

  1. Y. Baran, A. Bercovich, A. Sebe-Pedros, Ya. Lubling, A. Giladi, E. Chomsky, Z. Meir, M. Hoichman, A. Lifshitz, and A. Tanay, ‘‘MetaCell: Analysis of single-cell RNA-seq data using K-nn graph partitions,’’ Genome Biol. 20, 1–19 (2019). https://doi.org/10.1186/s13059-019-1812-2

    Article  Google Scholar 

  2. A. Angra and S. Gardner, ‘‘Reflecting on graphs: Attributes of graph choice and construction practices in biology,’’ CBE-Life Sci. Educ. 16 (3), ar53 (2017). https://doi.org/10.1187/cbe.16-08-0245

    Article  Google Scholar 

  3. F. Li, X. Li, and L. Ren, ‘‘Noise-induced collective dynamics in the small-world network of photosensitive neurons,’’ J. Biol. Phys. 48, 321–338 (2022). https://doi.org/10.1007/s10867-022-09610-2

    Article  Google Scholar 

  4. A. Ulker, A. Gürsoy, and N. Gürsoy, ‘‘The energy and Sombor index of graphs,’’ MATCH Commun. Math. Comput. Chem. 87, 51–58 (2022). https://doi.org/10.46793/match.87-1.051U

    Article  MATH  Google Scholar 

  5. H. Nawaz, H. Ali, and A. Laghari, ‘‘UAV communication networks issues: A review,’’ Arch. Comput. Methods Eng. 28, 1349–1369 (2021). https://doi.org/10.1007/s11831-020-09418-0

    Article  Google Scholar 

  6. M. Jia, B. Gabrys, and K. Musial, ‘‘A network science perspective of graph convolutional networks: A survey,’’ arXiv: 2301.04824 (2023).

  7. F. Buckley and F. Harary, ‘‘Unsolved problems on distance in graphs,’’ Electron. Notes Discrete Math. 11, 89–97 (2002). https://doi.org/10.1016/S1571-0653(04)00057-5

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Sipper and E. Ruppin, ‘‘Co-evolving cellular architectures by cellular programming,’’ in Proceedings of IEEE International Conference on Evolutionary Computation (1996), pp. 306–311. https://doi.org/10.1109/ICEC.1996.542380

  9. R. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A. van Norstrand, B. J. Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie, et al., ‘‘IBM POWER7 multicore server processor,’’ IBM J. Res. Developm. 55 (3), 1–1 (2011). https://doi.org/10.1147/JRD.2011.2127330

    Article  Google Scholar 

  10. L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, N. Juan, and P. Hanrahan, ‘‘Larrabee: A many-core X86 architecture for visual computing,’’ ACM Trans. Graph. 27 (3), 1–15 (2008). https://doi.org/10.1145/1360612.1360617

    Article  Google Scholar 

  11. D. Mans, ‘‘Optimal distributed algorithms in unlabeled tori and chordal rings,’’ J. Parallel Distrib. Comput. 46, 80–90 (1997). https://doi.org/10.1006/jpdc.1997.1389

    Article  MATH  Google Scholar 

  12. J.-C. Bermond, F. Comellas, and D. Hsu, ‘‘Distributed loop computer-networks: A survey,’’ J. Parallel Distrib. Comput. 24, 2–10 (1995). https://doi.org/10.1006/jpdc.1995.1002

    Article  Google Scholar 

  13. T.-Y. Zhang and D. Ye, ‘‘Distributed secure control against denial-of-service attacks in cyber-physical systems based on K-connected communication topology,’’ IEEE Trans. Cybern. 50, 3094–3103 (2020). https://doi.org/10.1109/TCYB.2020.2973303

    Article  Google Scholar 

  14. X. Huang, A. Ramos, and Y. Deng, ‘‘Optimal circulant graphs as low-latency network topologies,’’ J. Supercomput. 78, 13491–13510 (2022). https://doi.org/10.1007/s11227-022-04396-5

    Article  Google Scholar 

  15. R. Sampathkumar and S. Srinivasan, ‘‘Cyclic orthogonal double covers of 4-regular circulant graphs,’’ Discrete Math. 311, 2417–2422 (2011). https://doi.org/10.1016/j.disc.2011.06.021

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Scapellato, R. El-Shanawany, and M. Higazy, ‘‘Orthogonal double covers of Cayley graphs,’’ Discrete Appl. Math. 157, 3111–3118 (2009). https://doi.org/10.1016/j.dam.2009.06.005

    Article  MathSciNet  MATH  Google Scholar 

  17. R. El-Shanawany and H. Shabana, ‘‘General cyclic orthogonal double covers of finite regular circulant graphs,’’ Open J. Discrete Math. 2014 (2014). https://doi.org/10.4236/ojdm.2014.42004

  18. H.-D. Gronau, M. Grüttmüller, S. Hartmann, U. Leck, and V. Leck, ‘‘On orthogonal double covers of graphs,’’ Designs, Codes Cryptogr. 27, 49–91 (2002). https://doi.org/10.1023/A:1016546402248

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Diab, ‘‘On cordial labelings of wheels with other graphs,’’ Ars Combin. 100, 265–279 (2011).

    MathSciNet  MATH  Google Scholar 

  20. R. Sampathkumar, V. Sriram, and S. Arumugam, ‘‘Orthogonal \(\sigma\)-labellings of graphs,’’ AKCE Int. J. Graphs Combin. 5, 57–60 (2008). https://doi.org/10.1080/09728600.2008.12088851

    Article  MATH  Google Scholar 

  21. R. El-Shanawany and A. El-Mesady, ‘‘On Cartesian products of cyclic orthogonal double covers of circulants,’’ J. Math. Res. 6(4), 118 (2014). https://doi.org/10.5539/jmr.v6n4p118

    Article  Google Scholar 

  22. J. Demetrovics and G. Katona, ‘‘Extremal combinatorial problems in relational data base,’’ in Fundamentals of Computation Theory. FCT 1981, Lect. Notes Comput. Sci. 117, 110–119 (1981). https://doi.org/10.1007/3-540-10854-8_11

  23. R. Heinrich, ‘‘Graph decompositions and designs,’’ in The CRC Handbook of Combinatorial Designs (CRC, Boca Raton, 1996), pp. 361–366.

    Google Scholar 

  24. A. El-Mesady, O. Bazighifan, and Q. Al-Mdallal, ‘‘On infinite circulant-balanced complete multipartite graphs decompositions based on generalized algorithmic approaches,’’ Alexandria Eng. J. 61, 11267–11275 (2022). https://doi.org/10.1016/j.aej.2022.04.022

    Article  Google Scholar 

  25. R. El-Shanawany and A. El-Mesady, ‘‘On cyclic orthogonal double covers of circulant graphs by special infinite graphs,’’ AKCE Int. J. Graphs Combin. 14, 269–276 (2017). https://doi.org/10.1016/j.akcej.2017.04.002

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Higazy, ‘‘Orthogonal double covers of circulant graphs by corona product of certain infinite graph classes,’’ Indian J. Pure Appl. Math. 51, 1573–1585 (2020). https://doi.org/10.1007/s13226-020-0482-9

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Hartmann and U. Schumacher, ‘‘Orthogonal double covers of general graphs,’’ Discrete Appl. Math. 138, 107–116 (2004). https://doi.org/10.1016/S0166-218X(03)00274-9

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Karim, H. Ibrahim, and M. Darns, ‘‘Representation of half wing of butterfly and hamiltonian circuit for complete graph using starter set method,’’ ARPN J. Eng. Appl. Sci. 14, 7084–7088 (2019). https://doi.org/10.36478/JEASCI.2019.7084.7088

    Article  Google Scholar 

  29. S. Ganesamurthy and P. Paulraja, ‘‘A C5-decomposition of the \(\lambda\)-fold line graph of the complete graph,’’ Discrete Math. 342, 2726–2732 (2019). https://doi.org/10.1016/J.DISC.2019.06.004

    Article  MathSciNet  MATH  Google Scholar 

  30. F. Bowditch and P. J. Dukes, ‘‘Local balance in graph decompositions,’’ Graphs Combin. 38 (2), 1–17 (2022). https://doi.org/10.1007/S00373-021-02414-6

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Montgomery, A. Pokrovskiy, and B. Sudakov, ‘‘Embedding rainbow trees with applications to graph labelling and decomposition,’’ J. Eur. Math. Soc. 22, 3101–3132 (2020). https://doi.org/10.4171/JEMS/982

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Tang, B. Mao, Y. Kawamoto, and N. Kato, ‘‘Survey on machine learning for intelligent end-to-end communication toward 6G: From network access, routing to traffic control and streaming adaption,’’ IEEE Commun. Surv. Tutor. 23, 1578–1598 (2021). https://doi.org/10.1109/COMST.2021.3073009

    Article  Google Scholar 

  33. D. Chemodanov, F. Esposito, A. Sukhov, P. Calyam, H. Trinh, and Z. Oraibi, ‘‘AGRA: AI-augmented geographic routing approach for IoT-based incident-supporting applications,’’ Future Gener. Comput. Syst. 92, 1051–1065 (2019). https://doi.org/10.1016/J.FUTURE.2017.08.009

    Article  Google Scholar 

  34. L. Zhao, J. Li, A. Al-Dubai, A. Zomaya, G. Min, and A. Hawbani, ‘‘Routing schemes in software-defined vehicular networks: Design, open issues and challenges,’’ IEEE Intell. Transp. Syst. Mag. 13, 217–226 (2021). https://doi.org/10.1109/MITS.2019.2953557

    Article  Google Scholar 

  35. A. Romanov, N. Myachin, E. Lezhnev, A. Ivannikov, and A. El-Mesady, ‘‘Ring-split: Deadlock-free routing algorithm for circulant networks-on-chip,’’ Micromachines 14, 141 (2023). https://doi.org/10.3390/MI14010141

    Article  Google Scholar 

  36. A. Benmessaoud Gabis and M. Koudil, ‘‘NoC routing protocols—objective-based classification,’’ J. Syst. Archit. 66–67, 14–32 (2016). https://doi.org/10.1016/j.sysarc.2016.04.011

    Article  Google Scholar 

  37. S. Das, C. Karfa, and S. Biswas, ‘‘Formal modeling of network-on-chip using CFSM and its application in detecting deadlock,’’ IEEE Trans. VLSI Syst. 28, 1016–1029 (2022). https://doi.org/10.1109/TVLSI.2019.2959618

    Article  Google Scholar 

  38. W. Li, Y. Zhang, M. Qiao, L. Chang, L. Qin, and X. Lin, ‘‘Scaling distance labeling on small-world networks,’’ in Proceedings of the ACM SIGMOD International Conference on Management of Data (2019), pp. 1060–1077. https://doi.org/10.1145/3299869.3319877

  39. W. Zheng, H. Pan, and C. Sun, ‘‘A friendship-based altruistic incentive knowledge diffusion model in social networks,’’ Inform. Sci. 491, 138–150 (2019). https://doi.org/10.1016/J.INS.2019.04.009

    Article  MathSciNet  Google Scholar 

  40. P. Block, M. Hoffman, I. Raabe, J. Dowd, C. Rahal, R. Kashyap, and M. Mills, ‘‘Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world,’’ Nat. Human Behav. 4, 588–596 (2020). https://doi.org/10.1038/s41562-020-0898-6

    Article  Google Scholar 

  41. K. Weeden and B. Cornwell, ‘‘The small-world network of college classes: Implications for epidemic spread on a university campus,’’ Sociol. Sci. 7, 222–241 (2020). https://doi.org/10.15195/V7.A9

    Article  Google Scholar 

  42. G. Cimini, T. Squartini, F. Saracco, D. Garlaschelli, A. Gabrielli, and G. Caldarelli, ‘‘The statistical physics of real-world networks,’’ Nat. Rev. Phys. 1, 58–71 (2019). https://doi.org/10.1038/s42254-018-0002-6

    Article  Google Scholar 

  43. P. Ribeiro, P. Paredes, M. Silva, D. Aparicio, and F. Silva, ‘‘A survey on subgraph counting: Concepts, algorithms, and applications to network motifs and graphlets,’’ ACM Comput. Surv. 54 (2), 1–36 (2021). https://doi.org/10.1145/3433652

    Article  Google Scholar 

  44. L. Stone, D. Simberloff, and Y. Artzy-Randrup, ‘‘Network motifs and their origins,’’ PLOS Comput. Biol. 15, e1006749 (2019). https://doi.org/10.1371/JOURNAL.PCBI.1006749

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge A.A. Amerikanov for the support provided.

Funding

This research was supported by the Russian Science Foundation (project no. 22-29-00979).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. El-Mesady, T. Farahat, R. El-Shanawany, A. Y. Romanov or A. M. Sukhov.

Additional information

(Submitted by A. M. Elizarov)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Mesady, A., Farahat, T., El-Shanawany, R. et al. The Novel Generally Described Graphs for Cyclic Orthogonal Double Covers of Some Circulants. Lobachevskii J Math 44, 2638–2650 (2023). https://doi.org/10.1134/S1995080223070132

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080223070132

Keywords:

Navigation