Skip to main content
Log in

Simplest Skew Products on \(\boldsymbol{n}\)-Dimensional (\(\boldsymbol{n\geq 2}\)) Cells, Cylinders and Tori

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We describe the structure of the nonwandering set of continuous skew products on \(n\)-dimensional (\(n\geq 2\)) cells, cylinders and tori in the following two cases: 1) the set of periodic points is not empty (for self-maps of cylinders and tori), and it is closed for all maps under consideration; 2) the set of periodic points is empty for self-maps of cylinders and tori, and the nonwandering set is minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We also use the usual term ‘‘wandering set’’ for the set \(M\setminus\Omega(F)\) (see §3).

  2. In the current time there are no examples of skew products with \(n\)-dimensional phase spaces for \(n\geq 4\) and \(n_{*}\)-dimensional \(\omega\)-limit sets for arbitrary \(2\leq n_{*}\leq n-1\), although the paper [17] contains the algorithm (based on divergent series), which makes it possible to construct examples of these maps.

  3. If the case \((ii_{2.1})\) is realized then \(\delta^{*}=\varepsilon,\) and we consider positive subtrajectories with respect to \(F^{2^{\nu}q}\) of points \((x_{1}^{m},x_{2}^{m})\) and \((x_{1}^{0},x_{2}^{m})\).

  4. In the case \((ii_{2.2})\) the set \(W^{u}(x_{1}^{*},f_{1}^{2^{\gamma}q})\setminus\{x_{1}^{*}\}\) contains countable number of elements of the sequence \(\{x_{1}^{p}\}_{p\geq 1}\)

  5. In the case of existence of a positive number \(\delta,\) \(\delta>\varepsilon\) (here \(\delta^{*}=\varepsilon\)), it is necessary to consider sequential images of the point \((x_{1}^{p(\beta^{\prime})},x_{2}^{p(\beta^{\prime})})\) under corresponding maps.

REFERENCES

  1. R. L. Adler, A. G. Konheim, and M. H. McAndrew, ‘‘Topological entropy,’’ Trans. Am. Math. Soc. 114, 309–319 (1965).

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Arteaga, ‘‘Smooth triangular maps of the square with closed set of periodic points,’’ J. Math. Anal. Appl. 196, 987–997 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Auslander and Y. Katznelson, ‘‘Continuous maps on the circle without periodic points,’’ Israel J. Math. 32, 375–381 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Balibrea, J. L. Garcia Guirao, and J. I. Munoz Casado, ‘‘A triangular map on \(I^{2}\) whose \(\omega\)-limit sets are all compact interval of \({0}\times I\),’’ Discrete Contin. Dyn. Syst. 8, 983–994 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Balibrea, J. L. Garcia Guirao, and J. I. Munoz Casado, ‘‘On \(\omega\)-limit sets of triangular maps on the unit cube,’’ J. Differ. Equat. Appl. 9, 289–304 (2003).

    MATH  Google Scholar 

  6. E. V. Blinova and L. S. Efremova, ‘‘On \(\Omega\)-blow-ups in the simplest \(C^{1}\)-smooth skew products of interval mappings,’’ J. Math. Sci. (N. Y.) 157, 456–465 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Block, ‘‘Morse–Smale endomorphisms of the circle,’’ Proc. Am. Math. Soc. 48, 457–463 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Block, ‘‘The periodic points of Morse–Smale endomorphisms of the circle,’’ Trans. Am. Math. Soc. 226, 77–88 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Block, ‘‘Homoclinic points of mappings of the interval,’’ Proc. Am. Math. Soc. 72, 576–580 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  10. L. S. Block and W. A. Coppel, ‘‘Dynamics in one dimension,’’ Lect. Notes Math. 1513, 1 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Bowen, ‘‘Topological entropy and axiom A,’’ in Global Analysis, Proceedings of the Symposium on Pure Math. XIV, Berkeley, 1968 (Am. Math. Soc., RI, 1970), pp. 23–41.

  12. R. Bowen, ‘‘Entropy for group endomorphisms and homogeneous spaces,’’ Trans. Am. Math. Soc. 153, 401–414 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  13. I. U. Bronshtein, Nonautonomous Dynamical Systems (Stiintsa, Kishinev, 1984) [in Russian].

  14. L. S. Efremova, ‘‘On the nonwandering set and centre of triangular maps with a closed set of periodic points in the base,’’ in Dynamical Systems and Nonlinear Phenomena (Inst. Math. NASU, Kiev, 1990), pp. 15–25 [in Russian].

    Google Scholar 

  15. L. S. Efremova, ‘‘On the concept of the \(\Omega\)-function of the skew product of interval mappings,’’ J. Math. Sci. (N.Y.) 105, 1779–1798 (2001).

    Article  Google Scholar 

  16. L. S. Efremova, ‘‘On the nonwandering set and centre of some skew products of mappings of the interval,’’ Russ. Math. 50 (10), 17–25 (2006).

    MATH  Google Scholar 

  17. L. S. Efremova, ‘‘Differential properties and attracting sets of a simplest skew product of interval maps,’’ Sb. Math. 201, 873–907 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  18. L. S. Efremova, ‘‘Remarks on the nonwandering set of skew products with a closed set of periodic points of the quotient map,’’ in Nonlinear Maps and their Applications, Springer Proc. Math. Statist. 57, 39–58 (2014).

  19. L. S. Efremova, ‘‘Absence of \(C^{1}\)-\(\Omega\)-explosion in the space of smooth simplest skew products,’’ J. Math. Sci. (N.Y.) 202, 794–808 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  20. L. S. Efremova and A. S. Filchenkov, ‘‘Boundary conditions for maps in fibers and topological transitivity of skew products of interval maps,’’ J. Math. Sci. (N. Y.) 208, 109–114 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. L. S. Efremova, ‘‘Multivalued functions and nonwandering set of skew products of maps of an interval with complicated dynamics of quotient map,’’ Russ. Math. 60, 77–81 (2016).

    Article  MATH  Google Scholar 

  22. L. S. Efremova, ‘‘Nonwandering sets of \(C^{1}\)-smooth skew products of interval maps with complicated dynamics of quotient map,’’ J. Math. Sci. (N. Y.) 219, 86–98 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  23. L. S. Efremova, ‘‘Dynamics of skew products of maps of an interval,’’ Russ. Math. Surv. 72, 101–178 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  24. L. S. Efremova and E. N. Makhrova, ‘‘One-dimensional dynamical systems,’’ Russ. Math. Surv. 76, 821–881 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  25. L. S. Efremova, ‘‘Geometrically integrable maps in the plane and their periodic orbits,’’ Lobachevskii J. Math. 42, 2315–2324 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  26. V. V. Fedorenko and A. N. Sharkovsky, ‘‘Continuous mappings of an interval with a closed set of periodic points,’’ in Investigations of Differential and Differential-Difference Equations (Inst. Math. of NASU, Kiev, 1980), pp. 137–145 [in Russian].

    Google Scholar 

  27. A. S. Filchenkov, ‘‘The skew product on \(n\)-dimensional cell with transitive, but not totally transitive \(n\)-dimensional attractor,’’ Russ. Math. (Iz. VUZ) 60 (6), 79–87 (2016).

  28. A. S. Filchenkov, ‘‘On a class of totally topologically transitive skew products defined on cells in \({\mathbb{R}}^{n},n\geq 2\),’’ Math. Notes 102, 92–104 (2017).

    Article  MathSciNet  Google Scholar 

  29. J. L. G. Guirao and R. G. Rubio, ‘‘Nonwandering set of points of skew-product maps with base having closed set of periodic points,’’ J. Math. Anal. Appl. 362, 350–354 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  30. R. Ito, ‘‘Rotation sets are closed,’’ Math. Proc. Cambridge Phil. Soc. 89, 107–111 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Vol. 54 of Encyclopedia of Mathematics and its Applications (Cambridge Univ. Press, Cambridge, 1995).

  32. P. E. Kloeden, ‘‘On Sharkovsky’s cycle coexistence ordering,’’ Bul. Austr. Math. Soc. 20, 171–177 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  33. J. Kupka, ‘‘The triangular maps with closed sets of periodic points,’’ J. Math. Anal. Appl. 319, 302–314 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  34. K. Kuratowski, Topology (Academic, New York, 1966, 1968), Vols. 1, 2.

  35. V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, Vol. 22 of Princeton Math. Ser. (Princeton Univ. Press, Princeton, NJ, 1960).

  36. S. Newhouse, J. Palis, and F. Takens, ‘‘Bifurcations and stability of families of diffeomorphisms,’’ Inst. Hautes \(\acute{E}\)tudes Sci. Publ. Math. 57, 5–71 (1983).

    Article  MATH  Google Scholar 

  37. Z. Nitecki, Differentiable Dynamics. An Introduction to the Orbit Structure of Diffeomorphisms (MIT, Cambridge, MA, 1971).

    MATH  Google Scholar 

  38. Z. Nitecki, ‘‘Maps of the interval with closed periodic set,’’ Proc. Am. Math. Soc. 85, 451–456 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  39. A. N. Sharkovskii, ‘‘On cycles and the structure of a continuous mapping,’’ Ukr. Mat. Zh. 17, 104–111 (1965).

    MathSciNet  Google Scholar 

  40. A. N. Sharkovskii, ‘‘Non-wandering points and the centre of a continuous mapping of the line into itself,’’ Dopov. Akad. Nauk UkrRSR 7, 865–868 (1964).

    Google Scholar 

  41. A. N. Sharkovsky, Yu. L. Maistrenko, and E. Yu. Romanenko, Difference Equations and their Applications, Vol. 250 of Mathematics and Its Application (Kluwer Academic, Dordrecht, 1993).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Efremova.

Additional information

(Submitted by E. A. Turilova)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremova, L.S. Simplest Skew Products on \(\boldsymbol{n}\)-Dimensional (\(\boldsymbol{n\geq 2}\)) Cells, Cylinders and Tori. Lobachevskii J Math 43, 1598–1618 (2022). https://doi.org/10.1134/S1995080222100080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222100080

Keywords:

Navigation