Skip to main content
Log in

The Approximate Variation of Univariate Uniform Space Valued Functions and Pointwise Selection Principles

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Given a Hausdorff uniform space \(X\) with the countable gage of pseudometrics of the uniformity of \(X\), we introduce a concept of the approximate variation of a function \(f\) mapping a subset \(T\) of the reals into \(X\): this is the infimum of the family of Jordan-type variations of all functions \(g:T\to X\) which differ from \(f\) in each uniform pseudometric, generated by a pseudometric from the gage, not greater than \(\varepsilon>0\). We prove the following compactness theorem in the topology of pointwise convergence: if a pointwise relatively sequentially compact sequence of functions is such that the limit superior of its approximate variations is finite for all pseudometrics in the gage and all \(\varepsilon>0\), then it contains a subsequence which converges pointwise on the domain \(T\) to a bounded regulated function (in a generalized sense). We illustrate this result by appropriate sharp examples and present a new characterization of uniform space valued regulated functions in terms of the approximate variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We recall Helly’s selection principle for monotone functions in Section 4.

  2. In Section 2, we adopt a more general definition of regulated functions.

  3. As usual, \(V_{\varepsilon+0,\,p}(f,T)\) and \(V_{\varepsilon-0,\,p}(f,T)\) are the limits from the right and from the left of the function \(\varepsilon\mapsto V_{\varepsilon,\,p}(f,T)\), respectively.

  4. Recall that \(g\in X^{I}\) is a step function if, for some partition \(a=t_{0}<t_{1}<t_{2}<\ldots<t_{m-1}<t_{m}=b\) of \(I=[a,b]\), \(g\) takes a constant value on each open interval \((t_{i-1},t_{i})\), \(i=1,2,\ldots,m\). Clearly, \(g\in\text{BV}_{p}(I;X)\) for all \(p\in\mathcal{P}\).

REFERENCES

  1. A. Arhangel’skii and M. Tkachenko, Topological Groups and Related Structures (Atlantis, World Scientific, Amsterdam, 2008).

  2. G. Aumann, Reelle Funktionen (Springer, Berlin, 1954).

    Book  Google Scholar 

  3. V. Barbu and Th. Precupanu, Convexity and Optimization in Banach Spaces, 2nd ed. (Reidel, Dordrecht, 1986).

    MATH  Google Scholar 

  4. N. Bourbaki, General Topology (Springer, Berlin, 1987), Chaps. 1–4.

    Google Scholar 

  5. Z. A. Chanturiya, ‘‘The modulus of variation of a function and its application in the theory of Fourier series,’’ Sov. Math. Dokl. 15, 67–71 (1974).

    MATH  Google Scholar 

  6. V. V. Chistyakov, ‘‘On the theory of multivalued mappings of bounded variation of one real variable,’’ Sb. Math. 189, 797–819 (1998).

    Article  MathSciNet  Google Scholar 

  7. V. V. Chistyakov, ‘‘Selections of bounded variation,’’ J. Appl. Anal. 10 (1), 1–82 (2004).

    Article  MathSciNet  Google Scholar 

  8. V. V. Chistyakov, ‘‘The optimal form of selection principles for functions of a real variable,’’ J. Math. Anal. Appl. 310, 609–625 (2005).

    Article  MathSciNet  Google Scholar 

  9. V. V. Chistyakov, ‘‘A selection principle for functions with values in a uniform space,’’ Dokl. Math. 74, 559–561 (2006).

    Article  Google Scholar 

  10. V. V. Chistyakov, ‘‘A pointwise selection principle for functions of a real variable with values in a uniform space,’’ Sib. Adv. Math. 16 (3), 15–41 (2006).

    Google Scholar 

  11. V. V. Chistyakov, Metric Modular Spaces: Theory and Applications, Springer Briefs in Mathematics (Springer, Cham, 2015).

    Book  Google Scholar 

  12. V. V. Chistyakov, ‘‘Asymmetric variations of multifunctions with application to functional inclusions,’’ J. Math. Anal. Appl. 478, 421–444 (2019).

    Article  MathSciNet  Google Scholar 

  13. V. V. Chistyakov, From Approximate Variation to Pointwise Selection Principles, Springer Briefs in Optimization (Springer, Cham, 2021).

    Book  Google Scholar 

  14. V. V. Chistyakov and S. A. Chistyakova, ‘‘The joint modulus of variation of metric space valued functions and pointwise selection principles,’’ Studia Math. 238 (1), 37–57 (2017).

    Article  MathSciNet  Google Scholar 

  15. V. V. Chistyakov and S. A. Chistyakova, ‘‘Pointwise selection theorems for metric space valued bivariate functions,’’ J. Math. Anal. Appl. 452, 970–989 (2017).

    Article  MathSciNet  Google Scholar 

  16. V. V. Chistyakov, C. Maniscalco, and Yu. V. Tretyachenko, ‘‘Variants of a selection principle for sequences of regulated and non-regulated functions,’’ in Topics in Classical Analysis and Applications in Honor of Daniel Waterman, Ed. by L. de Carli, K. Kazarian, and M. Milman (World Scientific, Hackensack, NJ, 2008), pp. 45–72.

    MATH  Google Scholar 

  17. V. V. Chistyakov and D. Repovš, ‘‘Selections of bounded variation under the excess restrictions,’’ J. Math. Anal. Appl. 331, 873–885 (2007).

    Article  MathSciNet  Google Scholar 

  18. J. Dieudonné, Foundations of Modern Analysis (Academic, New York, 1960).

    MATH  Google Scholar 

  19. R. M. Dudley and R. Norvaiša, Differentiability of Six Operators on Nonsmooth Functions and p-Variation (Springer, Berlin, 1999).

    Book  Google Scholar 

  20. R. Engelking, General Topology (Heldermann, Berlin, 1989).

    MATH  Google Scholar 

  21. D. Fraňková, ‘‘Regulated functions,’’ Math. Bohem. 116 (1), 20–59 (1991).

    Article  MathSciNet  Google Scholar 

  22. C. Goffman, G. Moran and D. Waterman, ‘‘The structure of regulated functions,’’ Proc. Am. Math. Soc. 57, 61–65 (1976).

    Article  MathSciNet  Google Scholar 

  23. E. Helly, ‘‘Über lineare Funktionaloperationen,’’ Sitzungsber. Naturwiss. Kl. Kaiserl. Akad. Wiss. Wien 121, 265–297 (1912).

    MATH  Google Scholar 

  24. T. H. Hildebrandt, Introduction to the Theory of Integration (Academic, New York, London, 1963).

    MATH  Google Scholar 

  25. R. L. Jeffery, ‘‘Generalized integrals with respect to functions of bounded variation,’’ Canad. J. Math. 10, 617–628 (1958).

    Article  MathSciNet  Google Scholar 

  26. J. L. Kelley, General Topology (Van Nostrand, Princeton, NJ, 1957).

    MATH  Google Scholar 

  27. J. Musielak and W. Orlicz, ‘‘On generalized variations (I),’’ Studia Math. 18, 11–41 (1959).

    Article  MathSciNet  Google Scholar 

  28. I. P. Natanson, Theory of Functions of a Real Variable, (Nauka, Moscow, 1974; Ungar, New York, 1965).

  29. S. Perlman, ‘‘Functions of generalized variation,’’ Fund. Math. 105, 199–211 (1980).

    Article  MathSciNet  Google Scholar 

  30. Š. Schwabik, Generalized Ordinary Differential Equations (World Scientific, River Edge, NJ, 1992).

    Book  Google Scholar 

  31. L. Schwartz, Analyse Mathématique (Hermann, Paris, 1967), Vol. 1.

    MATH  Google Scholar 

  32. A. A. Tolstonogov, ‘‘Properties of the space of proper functions,’’ Math. Notes 35, 422–427 (1984).

    Article  Google Scholar 

  33. Yu. V. Tretyachenko, ‘‘A generalization of the Helly theorem for functions with values in a uniform space,’’ Russ. Math. (Iz. VUZ) 54 (5), 35–46 (2010).

  34. S. Willard, General Topology (Addison-Wesley, Reading, MA, 1970).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Chistyakov or S. A. Chistyakova.

Additional information

(Submitted by F. G. Avkhadiev)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistyakov, V.V., Chistyakova, S.A. The Approximate Variation of Univariate Uniform Space Valued Functions and Pointwise Selection Principles. Lobachevskii J Math 43, 550–563 (2022). https://doi.org/10.1134/S1995080222060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080222060087

Keywords:

Navigation