Skip to main content
Log in

Evaluation of the Level-of-Detail Generator for Visual Analysis of the ATLAS Computing Metadata

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

The ATLAS experiment at the LHC processes, analyses and stores vast amounts of data, which is either recorded by the detector or simulated worldwide using Monte Carlo methods. ATLAS Computing metadata is generated at very high rates and volumes. The necessity to analyze this metadata is constantly increasing, since the heterogeneous, distributed and dynamically changing computing infrastructure requires sophisticated optimization decisions, made by human or/and by machines. Visual analytics is one of the methods facilitating the analysis of massive amounts of data (structured, semi-structured, and unstructured) which leverages human judgement by means of interactive visual representations. Given the huge number of ATLAS computing jobs that need to be visualized simultaneously for error investigations or other optimization processes, resources of the client application responsible for such visualization may reach its limits. Data objects that share similar feature values can be represented and visualized as a single group, thus initial large data sample would be represented at different levels of detail. This approach will also avoid client overload. In this paper we evaluate implementations of k-means-based Level-of-Detail generator method applied to the metadata of ATLAS jobs. This method is used in the visual analytics application InVEx (Interactive Visual Explorer) that is under development, and which is based on 3-dimensional interactive visualization of multidimensional data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. The ATLAS Collab., “The ATLAS experiment at the CERN Large Hadron Collider,” J. Instrum. 3 (08), S08003 (2008).

    Google Scholar 

  2. ATLAS Fact Sheet: To raise awareness of the ATLAS detector and collaboration on the LHC, ATLAS-Brochure-2010-002-Eng. https://cds.cern.ch/record/1457044/. Accessed 2019.

    Google Scholar 

  3. F. H. Barreiro et al., “The ATLAS production system evolution: new data processing and analysis paradigm for the LHC Run2 and high-luminosity,” J. Phys.: Conf. Ser. 898, 052016 (2017).

    Google Scholar 

  4. F. H. Barreiro et al., “PanDA: exascale federation of resources for the ATLAS experiment at the LHC,” EPJ Web Conf. 108, 01001 (2016).

    Article  Google Scholar 

  5. M. Titov, M. Borodin, D. Golubkov, and A. Klimentov, “The ATLAS production system predictive analytics service: an approach for intelligent task analysis,” CEUR Workshop Proc. 2267, 124–128 (2018).

    Google Scholar 

  6. P. C. Wong and J. Thomas, “Visual analytics,” IEEE Comput. Graph. Appl. 24 (5), 20–21 (2004).

    Article  Google Scholar 

  7. A. Alekseev, A. Klimentov, T. Korchuganova, S. Padolski, and T. Wenaus, “ATLAS BigPanDA monitoring,” J. Phys.: Conf. Ser. 1085, 032043 (2018).

    Google Scholar 

  8. J. Andreeva et al., “Experiment dashboard for monitoring of the LHC distributed computing systems,” J. Phys.: Conf. Ser. 331, 072001 (2011).

    Google Scholar 

  9. J. Nielsen, Usability Engineering (Morgan Kaufmann, San Francisco, 1993).

    Book  Google Scholar 

  10. J. Bejar, “K-means vs Mini Batch K-means: a comparison,” UPCommons, Res. Report (Polytech. Univ. of Catalonia, 2013). http://hdl.handle.net/2117/23414. Accessed 2019.

    Google Scholar 

  11. M. Chavan, As. Patil, L. Dalvi, and Aj. Patil, “KMini batch K-means clustering on large dataset,” Int. J. Sci. Eng. Technol. Res. 004, 1356–1358 (2015).

    Google Scholar 

  12. Scikit-learn: Machine Learning in Python, Online documentation: Clustering - Mini Batch K-Means, https://scikit-learn.org/stable/modules/clustering.html#mini-batch-kmeans. Accessed 2019.

    Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support from the Russian Science Foundation grant no. 18-71-10003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Grigorieva, M. A. Titov, A. A. Alekseev, A. A. Artamonov, A. A. Klimentov, T. A. Korchuganova, I. E. Milman, T. P. Galkin or V. V. Pilyugin.

Additional information

Submitted by E. E. Tyrtyshnikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorieva, M.A., Titov, M.A., Alekseev, A.A. et al. Evaluation of the Level-of-Detail Generator for Visual Analysis of the ATLAS Computing Metadata. Lobachevskii J Math 40, 1788–1798 (2019). https://doi.org/10.1134/S199508021911012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199508021911012X

Keywords and phrases

Navigation