Skip to main content
Log in

Graphene Oxide as a Polymer

  • POLYMERIC, BIO-ORGANIC, AND HYBRID NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A simple method for producing a film of graphene oxide is described. The polymer film obtained was studied by transmission electron microscopy, scanning electron microscopy, X-ray diffraction analysis, elemental analysis, IR spectroscopy, and Raman spectroscopy. The results show that graphene oxide flakes are macromolecules that contain hydrogen bonds and are connected by van der Waals interactions. Thus, graphene oxide can be considered as an analogue of water-soluble polymers and has the characteristic properties of a polymer (tensile strength 17–18 MPa, flexibility, redispersibility).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. K. Novoselov, A. Geim, S. Morozov, et al., Science (Washington, DC, U. S.) 306, 666 (2004). https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. R. Ruoff, Nat. Nanotechnol. 3, 10 (2008).

    Article  CAS  Google Scholar 

  3. K. Novoselov, V. I. Fal’ko, L. Colombo, et al., Nature (London, U.K.) 490, 192 (2012). https://doi.org/10.12691/wjce-6-1-8

    Article  CAS  Google Scholar 

  4. S. Sahu and G. J. Rout, Int. Nano Lett. 7, 81 (2017). https://doi.org/10.1007/s40089-017-0203-5

    Article  CAS  Google Scholar 

  5. D. Ege, A. R. Kamali, and A. R. Boccaccini, Adv. Eng. Mater. 19, 1700627 (2017). https://doi.org/10.1002/adem.201700627

    Article  CAS  Google Scholar 

  6. H. M. Fang, X. Zhang, Y. H. Zhao, and S. L. Bai, Compos. Sci. Technol. 152, 243 (2017). https://doi.org/10.1016/j.compscitech.2017.09.032

    Article  CAS  Google Scholar 

  7. S. H. Lee, D. R. Dreyer, J. H. An, et al., Macromol. Rapid Commun. 31, 281 (2010). https://doi.org/10.1002/marc.200900641

    Article  CAS  Google Scholar 

  8. J. Chen, X. Chen, F. Meng, et al., High Perform. Polym. 29, 585 (2016). https://doi.org/10.1177/0954008316655861

    Article  CAS  Google Scholar 

  9. R. Rea, L. Simone, C. Meganne, et al., Polymers 10, 129 (2018). https://doi.org/10.3390/polym10020129

    Article  CAS  Google Scholar 

  10. F. Wang, L. T. Drzal, Y. Qin, and Z. Huang, Composites, Part B 79, 521 (2015). https://doi.org/10.1016/j.compositesb.2015.04.031

    Article  CAS  Google Scholar 

  11. X. M. Li, L. Tao, Z. F. Chen, et al., Appl. Phys. Rev. 4, 021306 (2017). https://doi.org/10.1063/1.4983646

    Article  CAS  Google Scholar 

  12. G. K. Zhao, X. M. Li, M. R. Huang, et al., Chem. Soc. Rev. 46, 4417 (2017). https://doi.org/10.1039/C7CS90114C

    Article  CAS  Google Scholar 

  13. D. R. Dreyer, S. Park, C. W. Bielawski, et al., Chem. Soc. Rev. 39, 228 (2010). https://doi.org/10.1039/B917103G

    Article  CAS  Google Scholar 

  14. Z. Zhang, H. C. Schniepp, and D. H. Adamson, Carbon 154, 510 (2019).

    Article  CAS  Google Scholar 

  15. A. M. Dimiev and T. A. Polson, Carbon 93, 544 (2015). https://doi.org/10.1016/j.carbon.2015.05.058

    Article  CAS  Google Scholar 

  16. M. C. Ramakrishnan and R. R. Thangavelu, Adv. Mater. Res. 678, 56 (2013). https://doi.org/10.4028/www.scientific.net/AMR.678.56

    Article  CAS  Google Scholar 

  17. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, et al., ACS Nano 4, 4806 (2010). https://doi.org/10.1021/nn1006368

    Article  CAS  Google Scholar 

  18. Y. Liang, Y. Li, H. Wang, et al., Nat. Mater. 10, 780 (2011). https://doi.org/10.1038/nmat3087

    Article  CAS  Google Scholar 

  19. Yu. V. Ioni, S. E. Lyubimov, A. A. Korlyukov, et al., Russ. Chem. Bull. 61, 1825 (2012).

    Article  CAS  Google Scholar 

  20. H. Tateishi, K. Hatakeyama, C. Ogata, et al., J. Electrochem. Soc. 160, F1175 (2013). https://doi.org/10.1149/2.008311jes

    Article  CAS  Google Scholar 

  21. W. Hummers and R. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  22. C. A. Harper, Handbook of Plastics, Elastomers, and Composites, 4th ed. (McGraw-Hill, New York, 2002).

    Google Scholar 

Download references

Funding

This work was supported by a grant of the President of the Russian Federation, project no. MK-893.2020.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Ioni.

Ethics declarations

Tests of GOF samples were carried out using the equipment of the Center for Collective Use for Study of the Physics of Materials, Institute of General and Inorganic Chemistry, Russian Academy of Sciences, as part of a State Assignment of the Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of fundamental scientific research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioni, Y.V., Groshkova, Y.A., Gubin, S.P. et al. Graphene Oxide as a Polymer. Nanotechnol Russia 15, 163–168 (2020). https://doi.org/10.1134/S1995078020020111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078020020111

Navigation