Skip to main content
Log in

BIODEGRADABLE COMPOSITIONS OF ULTRATHIN POLY-3-HYDROXYBUTYRATE FIBERS WITH MNCL2–TETRAPHENYLPORPHYRIN COMPLEXES. DYNAMICS, STRUCTURE, AND PROPERTIES

  • POLYMER, BIOORGANIC, AND HYBRID NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

Comprehensive studies combining X-ray structural analysis, structural dynamic measurements with an EPR probe method, thermophysical measurements (DSC), and scanning electron microscopy have been carried out. The specificity of the crystalline and amorphous structure of ultrathin poly-3-hydroxybutyrate fibers containing a low concentration of manganese complex with chlorotetraphenyl porphyrin (MnCl2–TPP) (0–5 wt %), obtained via electroforming, is considered. When PHB of MnCl2–TTP complexes are added to PHB fibers, the morphology of the fibers changes, crystallinity increases, and the molecular mobility in the dense amorphous regions of the polymer slows down. The temperature effect on the fibers (annealing at 140°С) leads to a sharp increase in crystallinity and molecular mobility in the amorphous regions of poly-3-hydroxybutyrate. Exposure of fibers in an aqueous medium at 70°С leads to a sharp decrease in the enthalpy of melting and to an increase in the molecular mobility of the chains in the amorphous regions. The fibrous materials have bactericidal properties and must be directly applied in the creation of therapeutic systems with antibacterial and antitumor action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. K. A. Dubey, C. V. Chaudhari, Y. K. Bhardwaj, and L. Varshney, “Polymers, blends and nanocomposites for implants, scaffolds and controlled drug release applications,” Adv. Struct. Mater. 66, 1 (2017).

    Article  Google Scholar 

  2. K. Ariga, A. Vinu, and M. Miyahara, “Recent progresses in bio-inorganic nanohybrids,” Curr. Nanosci., No. 2, 197 (2006).

    Article  CAS  Google Scholar 

  3. J. L. Mann, A. C. Yu, G. Agmon, and E. A. Appel, “Supramolecular polymeric biomaterials,” Biomater. Sci. 6, 10 (2018).

    Article  CAS  Google Scholar 

  4. D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21, 1184 (2003).

    Article  CAS  Google Scholar 

  5. T. Ishihara and T. Mizushima, “Techniques for efficient entrapment of pharmaceuticals in biodegradable solid micro/nanoparticles,” Expert Opinion Drug Deliv. 7, 565 (2010).

    Article  CAS  Google Scholar 

  6. M. K. Haidar and H. Erol, “Nanofibers: new insights for drug delivery and tissue engineering,” Curr. Top. Med. Chem. 17, 1564 (2017).

    Article  CAS  Google Scholar 

  7. N. Bhardwaj and S. C. Kundu, “Electrospinning: a fascinating fiber fabrication technique,” Biotechnol. Adv. 28, 325 (2010).

    Article  CAS  Google Scholar 

  8. R. M. Streicher, M. Schmidt, and S. Fiorito, “Nanosurfaces and nanostructures for artificial orthopedic implants,” Nanomedicine 2, 861 (2007).

    Article  CAS  Google Scholar 

  9. S. P. Miguel, D. R. Figueira, D. Simões, et al., “Electrospun polymeric nanofibres as wound dressings: a review,” Colloids Surf., B 169, 60 (2018).

    Article  CAS  Google Scholar 

  10. B. Zhou, Y. Li, H. Deng, et al., “Antibacterial multilayer films fabricated by layer-by-layer immobilizing lysozyme and gold nanoparticles on nanofibers,” Colloids Surf., B 116, 432 (2014).

    Article  CAS  Google Scholar 

  11. H. Cheng, X. Yang, X. Che, et al., “Biomedical application and controlled drug release of electrospun fibrous materials,” Mater. Sci. Eng. 90, 750 (2018).

    Article  CAS  Google Scholar 

  12. K. V. Malafeev, O. A. Moskalyuk, V. E. Yudin, et al., “Synthesis and properties of fibers prepared from lactic acid-glycolic acid copolymer,” Polymer Sci., Ser. A 59, 53 (2017).

    Article  CAS  Google Scholar 

  13. K. Cao, Y. Liu, A. A. Olkhov, et al., “PLLA-PHB fiber membranes obtained by solvent-free electrospinning for short-time drug delivery,” Drug Deliv. Transl. Res., No. 8, 291 (2018).

    Article  Google Scholar 

  14. R. Dorati, A. DeTrizio, T. Modena, et al., “Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy,” Pharmaceuticals 10 (4), E96 (2017). https://doi.org/10.3390/ph10040096

    Article  CAS  Google Scholar 

  15. S. Das and A. B. Baker, “Biomaterials and nanotherapeutics for enhancing skin wound healing,” Front. Bioeng. Biotechnol., No. 4, 82 (2016).

  16. C. D. Tran, S. Duri, and A. L. Harkins, “Recyclable synthesis, characterization and antimicrobial activity of chitozan-based polysaccharide composite materials,” J. Biomed. Mater. Res. A, No. 8, 2248 (2013). https://doi.org/10.1002/jbm.a.34520

    Article  CAS  Google Scholar 

  17. Yu. N. Filatov, Electroforming of Fibrous Materials (EFF-Process) (Neft’ Gaz, Moscow, 1997) [in Russian].

  18. Z. Liang and J. H. Freed, “An assessment of the applicability of multifrequency ESR to study the complex dynamics of biomolecules,” J. Phys. Chem. B, No. 10, 6384 (1999).

    Article  CAS  Google Scholar 

  19. V. P. Timofeev, A. Yu. Misharin, and Ya. V. Tkachev, Biophysics 56, 407 (2011).

    Article  Google Scholar 

  20. A. M. Vasserman, A. L. Buchachenko, A. L. Kovarskii, and M. B. Neiman, “Study of molecular motion in polymers by the paramagnetic probe method,” Polymer Sci. USSR 10, 2238 (1976).

    Article  Google Scholar 

  21. A. V. Bychkova, A. L. Iordanskii, R. Y. Kosenko, et al., “Magnetic and transport properties of magneto-anisotropic nanocomposites for controlled drug delivery,” Nanotechnol. Russ. 10, 325 (2015).

    Article  CAS  Google Scholar 

  22. S. Vyazovkin, N. Koga, and C. V. Schick, Handbook of Thermal Analysis and Calorimetry, Applications to Polymers and Plastics (Elsevier, Amsterdam, Boston, London, 2002).

    Google Scholar 

  23. A. A. Ol’khov, S. G. Karpova, A. L. Iordanskii, et al., “Effect of rolling on the structure of fibrous materials based on poly-3-hydroxybutyrate and obtained by electrospinning,” Fibre Chem. 46, 317 (2015).

    Article  Google Scholar 

  24. S. G. Karpova, A. A. Ol’khov, et al., “Structural dynamic properties of nonwoven composite mixtures based on ultrafine tissues of poly-3-hydroxybutyrate with chitosan,” Russ. J. Phys. Chem. B 10, 687 (2016).

    Article  CAS  Google Scholar 

  25. S. G. Karpova, A. A. Olkhov, A. V. Bakirov, et al., “Poly-3-hydroxybutyrate matrices modified with iron(III) complexes with tetraphenylporphyrin. Analysis of the structural dynamic parameters,” Russ. J. Phys. Chem. B 12, 142 (2018).

    Article  CAS  Google Scholar 

  26. S. G. Karpova, A. A. Ol’khov, A. V. Krivandin, et al., “Effect of zinc-porphyrin complex on the structure and properties of poly-3-hydroxybutyrate ultrathin fibers,” Polymer Sci., Ser. A 61, 70 (2019).

    Article  CAS  Google Scholar 

  27. A. N. Ozerin, Cand. Sci. (Chem.) Dissertation (Karpov Phys. Chem. Inst., Moscow, 1977).

  28. Y. V. Tertyshnaya and L. S. Shibryaeva, “Degradation of poly(3-hydroxybuty-rate) and its blends during treatment with UV light and water,” Polymer Sci., Ser. B 55, 164 (2013).

    Article  CAS  Google Scholar 

  29. P. P. Kamaev, Cand. Sci. (Chem.) Dissertation (Semenov Inst. Chem. Phys. RAS, Moscow, 2001).

  30. A. L. Iordanskii, A. A. Ol’khov, S. G. Karpova, et al., “Influence of the structure and morphology of ultrathin poly-3-hydroxybutyrate fibers on the diffusion kinetics and transport of drugs,” Polymer Sci., Ser. A 59, 343 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank S.N. Chvalun, A.N. Bakirov for the XRD studies of PHB/MnCl2–TPP fibers, and Prof. U.J. Haenggi (Biomer®, Krailling, Germany) for providing poly-3-hydroxybutyrate.

Funding

We used equipment from the Center for Collective Use “New materials and technologies” of the Emanuel Institute of Biochemical Physics, RAS. The spectral and calorimetric studies were completed at the N.N. Semenov Institute of Chemical Physics, RAS, under the terms of the RF Ministry of Education and Science Government task (nos. AAAA-A18-118020890097-1 and AAAA-A17-117040610309-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Karpova.

Ethics declarations

We have no conflict of interest to declare.

Additional information

Translated by P. Vlasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpova, S.G., Ol’khov, A.A., Lobanov, A.V. et al. BIODEGRADABLE COMPOSITIONS OF ULTRATHIN POLY-3-HYDROXYBUTYRATE FIBERS WITH MNCL2–TETRAPHENYLPORPHYRIN COMPLEXES. DYNAMICS, STRUCTURE, AND PROPERTIES. Nanotechnol Russia 14, 132–143 (2019). https://doi.org/10.1134/S1995078019020083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019020083

Navigation