Skip to main content
Log in

The Effect of Filler Content on the IR Spectra of Poly(p-xylylene)–Sulfide Nanocomposites

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The effect of the nature of a filler and its concentration (C ~ 0–100 vol %) on the IR spectra (500–4000 cm–1) of thin nanocomposite films based on poly(p-xylylene) and sulfides (PPX–PbS, PPX–CdS, and PPX–S) was studied. Films with a thickness d ~ 0.5 μm are produced via low-temperature vapor deposition polymerization on silicon substrates. The common and specific variations in the IR-spectra of nanocomposite films are identified. The low-frequency shifts of C–H out-of-plane deformation vibrations of aromatic rings and the changes in characteristic band intensities of PPX are observed with increasing filler concentration. Additional IR-bands arise at 1000–1800 cm–1 for PPX–PbS and PPX–CdS films and at 3100–3600 cm–1 for PPX–CdS ones. However, the bands attributed to C–C and C–H stretch vibrations of the ring and С–Н deformation vibrations of СН2-groups are found to lose much of their intensity in PPX–S films. The occurrence of complementary IR bands in nanocomposites is due to the formation of (1) complex sulfoxide phases with PbS nanoparticles, (2) C–O and C=O groups because of the oxidation of PPX polymer chains in the PPX–PbS films, and (3) complex compounds with sulfo (SO4), hydroxyl (OH), and carboxylate (СОО) groups in the PPX–CdS films. Furthermore, some IR bands in PPX–PbS and PPX–CdS films are structural modifications of the substituted aromatic ring due to loss of symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. E. I. Grigor’ev, S. A. Zav’yalov, and S. N. Chvalun, “GLP synthesis of poly-n-xylylene-metal (semiconductor) nanocomposite materials for chemical sensors,” Ross. Nanotekhnol. 1 (1–2), 58 (2006).

    Google Scholar 

  2. A. V. Gusev, K. A. Mailyan, A. V. Pebalk, I. A. Ryzhikov, and S. N. Chvalun, “Prospects for the application of nanostructured polymer and nanocomposite films based on poly-p-xylylene for micro-, opto-, and nanoelectronics,” J. Commun. Technol. Electron. 54, 833 (2009).

    Article  Google Scholar 

  3. S. A. Zav’yalov, I. Skhounman, E. N. Golubeva, et al., “The structure of thin-film photoelectrode nanocomposites based on a matrix of poly-n-xylylene,” Ross. Nanotekhnol. 2 (3–4), 101 (2007).

    Google Scholar 

  4. S. A. Zavyalov, E. I. Grigoriev, A. S. Zavyalov, et al., “Structure and properties of titanium-polymer thin film nanocomposites,” Int. J. Nanosci. 4, 149 (2005).

    Article  CAS  Google Scholar 

  5. D. R. Streltsov, K. A. Mailyan, A. V. Gusev, et al., “Electrical properties, structure, and surface morphology of poly(p-xylylene)—silver nanocomposites synthesized by low-temperature vapor deposition polymerization,” Appl. Phys. A 110, 413 (2013).

    Article  CAS  Google Scholar 

  6. S. A. Ozerin, E. V. Kireeva, E. I. Grigor’ev, G. N. Gerasimov, and S. N. Chvalun, “Structure of nanocomposites based on lead sulfide and poly-p-xylylene,” Polymer Sci., Ser. A 49, 809 (2007).

    Article  Google Scholar 

  7. P. V. Morozov, A. Yu. Khnykov, E. I. Grigor’ev, S. A. Zav’yalov, V. G. Klimenko, and S. N. Chvalun, “Structure and optical properties of poly-p-xylylene-lead sulfide nanocomposites derived by vapor deposition polymerization,” Nanotechnol. Russ. 7, 41 (2012).

    Article  Google Scholar 

  8. A. A. Nesmelov, L. N. Oveshnikov, S. A. Ozerin, et al., “Effect of thermal annealing on structure and optical properties of poly(p-xylylene)—PbS thin films,” J. Phys. Chem. C 123, 10517 (2019).

    Article  CAS  Google Scholar 

  9. I. V. Klimenko, E. P. Krinichnaya, T. S. Zhuravleva, S. A. Zav’yalov, E. I. Grigor’ev, I. A. Misurkin, S. V. Titov, and B. A. Loginov, “Polyparaxylylene-CdS nanocomposite films: optical spectra, photoluminescence, and surface topography,” Russ. J. Phys. Chem. A 80, 2041 (2006).

    Article  CAS  Google Scholar 

  10. P. V. Morozov, E. I. Grigor’ev, S. A. Zav’yalov, and S. N. Chvalun, “Rectification effect in poly-p-xylylene–cadmium sulfide graded nanocomposites,” Phys. Solid State 54, 2291 (2012).

    Article  CAS  Google Scholar 

  11. O. P. Ivanova, E. P. Krinichnaya, S. A. Zavyalov, and T. S. Zhuravleva, “Effect of filler concentration and film thickness on structure and optical properties of poly(p-xylylene)-cadmium sulphide nanocomposites,” Nanotechnol. Russ. 12, 627 (2017).

    Article  CAS  Google Scholar 

  12. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, “New crystalline phase in thin lead sulfide films,” JETP Lett. 89, 238 (2009).

    Article  CAS  Google Scholar 

  13. N. S. Kozhevnikova, A. S. Vorokh, and A. A. Uritskaya, “Cadmium sulfide nanoparticles prepared by chemical bath deposition,” Russ. Chem. Rev. 84, 225 (2015).

    Article  Google Scholar 

  14. E. V. Maraeva, A. I. Maksimov, L. B. Matyushkin, et al., “Analysis of the oxidation features of layers based on lead and cadmium sulfides,” Al’tern. Energet. Ekol., No. 19, 128 (2015).

  15. Y. Wang and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties,” J. Phys. Chem. 95, 525 (1991).

    Article  CAS  Google Scholar 

  16. A. A. Knyazeva, S. A. Ozerin, E. I. Grigor’ev, S. N. Chvalun, S. A. Zav’yalov, and I. E. Kardash, “Vapor deposition preparation of thin poly-p-xylylene films,” Polymer Sci., Ser. B 47, 210 (2005).

    Google Scholar 

  17. D. R. Streltsov, K. A. Mailyan, A. V. Gusev, et al., “Structure and optical properties of thin poly(p-xylylene)-silver nanocomposite films prepared by low-temperature vapor deposition polymerization,” Polymer 71, 60 (2015).

    Article  CAS  Google Scholar 

  18. K. M. Vaeth and K. F. Jensen, “Selective growth of poly(p-phenylene vinylene) prepared by chemical vapor deposition,” Adv. Mater. 11, 814 (1999).

    Article  CAS  Google Scholar 

  19. K. M. Vaeth and K. F. Jensen, “Transition metals for selective chemical vapor deposition of parylene-based polymers,” Chem. Mater. 12, 1305 (2000).

    Article  CAS  Google Scholar 

  20. H.-Y. Chen, J. H. Lai, X. Jiang, and J. Lahann, “Substrate-selective chamical vapor deposition of reactive polymer coatings,” Adv. Mater. 20, 3474 (2008).

    Article  CAS  Google Scholar 

  21. S. A. Zavyalov, A. N. Pivkina, and J. Schoonman, “Formation and characterization of metal-polymer nanostructured composites,” Solid State Ionics 147, 415 (2002).

    Article  CAS  Google Scholar 

  22. E. P. Krinichnaya, O. P. Ivanova, S. A. Zav’yalov, E. I. Grigoriev, and T. S. Zhuravleva, “Synthesis of poly-p-xylylene + CdS nanocomposites and studing of their surface structure,” J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 25 (2012).

    Article  CAS  Google Scholar 

  23. R. N. Nurmukhametov, L. V. Volkova, A. V. Pebalk, et al., “Optical absorption and fluorescence spectra of poly-α,α,α',α'-tetrafluoro-p-xylylene,” Dokl. Akad. Nauk 373, 650 (2000).

    CAS  Google Scholar 

  24. P. V. Morozov, E. I. Grigor’ev, S. A. Zav’yalov, V. G. Klimenko, N. A. Shmakova, and S. N. Chvalun, “Structure and optical characteristics of poly(p-phenylenevinylene) prepared by vapor deposition polymerization,” Polymer Sci., Ser. B 52, 151 (2010).

    Article  Google Scholar 

  25. R. N. Nurmukhametov, S. N. Dyadyushkina, K. A. Mailyan, et al., “On the nature of absorption and luminescence centers in a poly-n-xylylene film,” Vysokomol. Soedin., Ser. A 33, 1525 (1991).

    CAS  Google Scholar 

  26. M. Bera, A. C. Rivaton, C. Gandon, and J. L. Gardette, “Photooxidation of poly(para-xylylene),” Eur. Polym. J. 36, 1753 (2000).

    Article  CAS  Google Scholar 

  27. O. R. Akhmedov, M. G. Guseinaliev, N. A. Abdullaev, N. M. Abdullaev, S. S. Babaev, and N. A. Kasumov, “Optical properties of PbS thin films,” Semiconductors 50, 50 (2016).

    Article  CAS  Google Scholar 

  28. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Interscience, New York, 1986).

    Google Scholar 

  29. R. Thielsch, T. Bohme, R. Reiche, et al., “Quantum-size effect of PbS nanocrystallites in evaporated composite films,” Nanostruct. Mater. 10, 131 (1998).

    Article  CAS  Google Scholar 

  30. S. I. Andreev and M. I. Kamchatka, “Physicochemical analysis of processes for producing photosensitive layers based on lead sulfide,” Izv. LETI, No. 471, 55 (1994).

    Google Scholar 

  31. S. I. Andreev, M. I. Kamchatka, M. Yu. Chashinov, and I. V. Chernyshova, “ESA and IR spectroscopy studies of lead sulfate and oxosulfate,” Izv. LETI, No. 488, 107 (1995).

    Google Scholar 

  32. M. I. Kamchatka, Yu. M. Chashchinov, and D. B. Chesnokova, “Effect of oxidation conditions on the phase composition, structure, and properties of photosensitive lead sulfide layers,” Inorg. Mater. 37, 910 (2001).

    Article  CAS  Google Scholar 

  33. E. J. D. Klem, D. D. MacNeil, L. Levina, and E. H. Sargent, “Solution processed photovoltaic devices with 2% infrared monochromatic power conversion efficiency: perfomance optimization and oxide formation,” Adv. Mater. 20, 3433 (2008).

    Article  CAS  Google Scholar 

  34. T. Awatani and A. J. McQuillan, “Adsorbed thiosulfate intermediate of cadmium sulfide aqueous photocorrosion detected and characterized by in situ infrared spectroscopy,” J. Phys. Chem. 102, 4110 (1998).

    Article  CAS  Google Scholar 

  35. A. T. Nabiev, R. D. Asadullina, A. A. Gashnikova, et al., “Experimental study of cadmium sulphate cooperation with water-glass in water solutions,” Bashkir. Khim. Zh. 16 (4), 25 (2009).

    CAS  Google Scholar 

  36. V. P. Smagin, D. A. Davydov, N. M. Unzhakova, and A. A. Biryukov, “Synthesis and spectral properties of colloidal solutions of metal sulfides,” Russ. J. Inorg. Chem. 60, 1588 (2015).

    Article  CAS  Google Scholar 

  37. A. S. Vorokh, N. S. Kozhevnikova, A. A. Rempel, and A. Magerl, “Formation of cadmium sulfide (CdS) nanofilm on a Cd(OH2)/SiO2 precursor layer,” J. Struct. Chem. 51, 1170 (2010).

    Article  CAS  Google Scholar 

  38. G. I. Dzhardimalieva and A. D. Pomogailo, “Macromolecular metal carboxylates,” Russ. Chem. Rev. 77, 259 (2008).

    Article  CAS  Google Scholar 

  39. T. S. Zhuravleva, O. P. Ivanova, E. P. Krinichnaya, I. A. Misurkin, S. V. Titov, S. A. Zav’yalov, and E. I. Grigor’ev, “Photoconductivity of poly-p-xylylene + CdS nanocomposite films over a wide temperature range,” Russ. J. Phys. Chem. B 5, 681 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-03-00582).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. P. Ivanova, P. V. Morozov or S. A. Zav’yalov.

Additional information

Translated by O. Maslova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, O.P., Krinichnaya, E.P., Morozov, P.V. et al. The Effect of Filler Content on the IR Spectra of Poly(p-xylylene)–Sulfide Nanocomposites. Nanotechnol Russia 14, 7–15 (2019). https://doi.org/10.1134/S1995078019010051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078019010051

Navigation