Skip to main content
Log in

Optimizing Production Conditions for a Composite Optical Oxygen Sensor Using Mesoporous SiO2

  • DEVICES AND PRODUCTS BASED ON NANOMATERIALS AND NANOTECHNOLOGIES
  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

This paper reports on the creation of a new composite sensor material for detecting molecular oxygen, in which the fluorescent indicator, Pt (II) 5,10,15,20-tetrakis(2,3,4,5,6-pentafluorophenyl)-porphyrin, is adsorbed on mesoporous silica particles distributed in a fluorinated polymer performing the functions of the gas transmission line and protection against leaching. A set of methods is used to determine the optimal conditions for the monolayer adsorption of the dye. It is found that unwanted multilayer adsorption with the formation of dimers begins when the ratio of the diameter of the average adsorption center to the average diameter of the indicator molecule is less than three. An original method is applied for the encapsulation of microparticles with the formation of a surface salt of fluorinated surfactants, which protect the material at the manufacturing stage before its deposition to the substrate. It is shown that the material has a linear calibration dependence in a range from 0 to 40°C, a response time in the gas phase of less than 10 s, and photostability sufficient to function as an oxygen sensor for at least a year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. B. Papkovsky and R. I. Dmitriev, Quenched-Phosphorescence Detection of Molecular Oxygen: Applications in Life Sciences (R. Soc. Chem., UK, 2018).

    Book  Google Scholar 

  2. O. S. Wolfbeis, “Luminescent sensing and imaging of oxygen: fierce competition to the Clark electrode,” BioEssays 37, 921–928 (2015).

    Article  Google Scholar 

  3. I. Ahmed, H. Lin, L. Zou, A. L. Brody, I. M. Qazi, L. Lv, T. R. Pavase, M. U. Khan, S. Khan, and L. Sun, “An overview of smart packaging technologies for monitoring safety and quality of meat and meat products,” Packag. Technol. Sci. 31, 449–471 (2018).

    Article  Google Scholar 

  4. N. K. Zaitsev, A. A. Zharov, P. V. Mel’nikov, and A. E. Kozhukhova, “Rapid procedure for measuring oxygen concentration in aqueous, non-aqueous and gaseous media,” Zavod. Lab., Diagn. Mater. 83 (9), 9–14 (2017).

    Google Scholar 

  5. W. Feng, N. Zhou, L. Chen, and B. Li, “An optical sensor for monitoring of dissolved oxygen based on phase detection,” J. Opt. 15, 055502 (2013).

    Article  Google Scholar 

  6. O. S. Wolfbeis, “Materials for fluorescence-based optical chemical sensors,” J. Mater. Chem. 15, 2657–2669 (2005).

    Article  Google Scholar 

  7. M. Quaranta, S. M. Borisov, and I. Klimant, “Indicators for optical oxygen sensors,” Bioanal. Rev. 4, 115–157 (2012).

    Article  Google Scholar 

  8. Ch.-Sh. Chu and Yu-L. Lo, “High-performance fiber-optic oxygen sensors based on fluorinated xerogels doped with Pt(II) complexes,” Sens. Actuators, B 124, 376–382 (2007).

    Article  Google Scholar 

  9. Ch.-Sh. Chu and Ch.-A. Lin, “Optical fiber sensor for dual sensing of temperature and oxygen basedon PtTFPP/CF embedded in sol–gel matrix,” Sens. Actuators, B 195, 259–265 (2014).

    Article  Google Scholar 

  10. J. M. Bolivar, S. Schelch, T. Mayr, and B. Nidetzky, “Mesoporous silica materials labeled for optical oxygen sensing and their application to development of a silica-supported oxidoreductase biocatalyst,” ACS Catal. 5, 5984–5993 (2015).

    Article  Google Scholar 

  11. K. H. Chae, D. W. Hong, M. K. Lee, O. J. Son, and J. I. Rhee, “Anti-fouling sol–gel-derived sensing membrane entrapped with polymer containing phosphorylcholine groups for an optical O2 sensor application,” Sens. Actuators, B 173, 636–642 (2012).

    Article  Google Scholar 

  12. Z. Hongbin and C. Mu, “Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications,” J. Med. Biol. Eng. 35, 143–155 (2015).

    Article  Google Scholar 

  13. P. Zhu, W. Meng, and Y. Huang, “Synthesis and antibiofouling properties of crosslinkable copolymers grafted with fluorinated aromatic side chains,” RSC Adv. 7, 3179–3189 (2017).

    Article  Google Scholar 

  14. D. B. Papkovsky and R. I. Dmitriev, “Biological detection by optical oxygen sensing,” Chem. Soc. Rev. 42, 8700–8732 (2013).

    Article  Google Scholar 

  15. J. Ehgartner, M. Strobl, J. M. Bolivar, D. Rabl, M. Rothbauer, P. Ertl, S. M. Borisov, and T. Mayr, “Simultaneous determination of oxygen and pH inside microfluidic devices using core-shell nanosensors,” Anal. Chem. 88, 9796–9804 (2016).

    Article  Google Scholar 

  16. J. Ehgartner, P. Sulzer, T. Burger, A. Kasjanow, D. Bouwes, U. Kruhne, I. Klimant, and T. Mayr, “Online analysis of oxygen inside silicon-glass microreactors withintegrated optical sensors,” Sens. Actuators, B 228, 748–757 (2016).

    Article  Google Scholar 

  17. P. Lehner, C. Staudinger, S. M. Borisov, and I. Klimant, “Ultra-sensitive optical oxygen sensors for characterization of nearly anoxic systems,” Nat. Commun. 5, 4460 (2014).

    Article  Google Scholar 

  18. N. K. Zaitsev, P. V. Melnikov, V. A. Alferov, A. V. Kopytin, and K. E. German, “Stable optical oxygen sensing material based on perfluorinated polymer and fluorinated platinum(II) and palladium(II) porphyrins,” Proc. Eng. 168, 309–312 (2016).

    Article  Google Scholar 

  19. B. J. Muller, T. Burger, S. M. Borisov, and I. Klimant, “High performance optical trace oxygen sensors based on NIR-emittingbenzoporphyrins covalently coupled to silicone matrixes,” Sens. Actuators, B 216, 527–534 (2015).

    Article  Google Scholar 

  20. K. Koren, S. M. Borisov, and I. Klimant, “Stable optical oxygen sensing materials based on click-coupling of fluorinated platinum(II) and palladium(II) porphyrins—a convenient way to eliminate dye migration and leaching,” Sens. Actuators, B 169, 173–181 (2012).

    Article  Google Scholar 

  21. A. P. Antropov, A. V. Ragutkin, P. V. Melnikov, and N. K. Zaitsev, “Composite material for optical oxygen sensor,” IOP Conf. Ser.: Mater. Sci. Eng. 289, 012031 (2018).

  22. N. A. Kuznetsova, O. A. Yuzhakova, A. S. Kozlov, A. A. Krasnovskii, M. G. Strakhovskaya, and O. L. Kaliya, “Effect of support-pore size on activity of heterogeneous photosensitizer based on phthalocyanine covalently grafted to aminopropylated silica gel,” Nanotechnol. Russ. 8, 122–128 (2013).

    Article  Google Scholar 

  23. H. Valimaki, J. Verho, J. Kreutzer, D. K. Rajan, T. Ryynanen, M. Pekkanen-Mattila, A. Ahola, K. Tappura, P. Kallio, and J. Lekkala, “Fluorimetric oxygen sensor with an efficient optical read-out forin vitro cell models,” Sens. Actuators, B 249, 738–746 (2017).

    Article  Google Scholar 

  24. A. V. Vannikov and A. D. Grishina, “The photorefractive effect in polymeric systems,” Russ. Chem. Rev. 72, 471–488 (2003).

    Article  Google Scholar 

  25. A. M. Buckley and M. Greenblatt, “The sol–gel preparation of silica gels,” J. Chem. Educ. 71, 599–602 (1994).

    Article  Google Scholar 

  26. M. Besbes, N. Fakhfakh, and M. Benzina, “Characterization of silica gel prepared by using sol–gel process,” Phys. Proc. 2, 1087–1095 (2009).

    Article  Google Scholar 

  27. B. K. Zuev, R. V. Novichkov, E. O. Aleksandrova, and A. Yu. Olenin, “Preparation and study of the surface-layer composition of chemically modified silica nanoparticles,” Nanotechnol. Russ. 10, 53–59 (2015).

    Article  Google Scholar 

  28. N. K. Zaitsev, V. I. Dvorkin, P. V. Melnikov, and A. E. Kozhukhova, “A dissolved oxygen analyzer with an optical sensor,” J. Anal. Chem. 73, 102–108 (2018).

    Article  Google Scholar 

  29. K. Korena, L. Huttera, B. Enko, A. Pein, S. M. Borisov, and I. Klimant, “Tuning the dynamic range and sensitivity of optical oxygen-sensors by employing differently substituted polystyrene-derivatives,” Sens. Actuators, B 176, 344–350 (2013).

    Article  Google Scholar 

  30. A. A. Isakova, A. V. Safonov, A. Yu. Alexandrovskaya, T. B. Galushko, A. V. Indenbom, and B. V. Spitsyn, “The effect of nanodiamond surface modification on interaction with pseudomonas putida K12,” Prot. Met. Phys. Chem. Surf. 53, 220–223 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by a grant from the Russian Science Foundation (project no. 17-79-10439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Melnikov.

Additional information

Translated by V. A. Alekseev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikov, P.V., Naumova, A.O., Alexandrovskaya, A.Y. et al. Optimizing Production Conditions for a Composite Optical Oxygen Sensor Using Mesoporous SiO2. Nanotechnol Russia 13, 602–608 (2018). https://doi.org/10.1134/S1995078018060083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078018060083

Navigation