Skip to main content
Log in

Synthesis and studies on the diffusion properties of MK-40 cation-exchange membranes modified with ceria

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

A number of MK-40 cation-exchange membrane samples modified with ceria have been obtained. The membranes have been studied using a set of physicochemical methods, including impedance spectroscopy, scanning electron microscopy, microanalysis, transmission electron microscopy, and XRD phase analysis. It has been shown that the introduction of cerium oxide reduces the humidity content and ionic conductivity of membranes. It is accompanied by a marked increase in the membrane selectivity expressed by a decrease in transfer numbers with respect to anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. B. Prater, J. Power Sources 51, 129–144 (1994).

    Article  Google Scholar 

  2. A. B. Yaroslavtsev, V. I. Zabolotskii, and V. V. Nikonenko, Russ. Chem. Rev. 72, 393 (2003).

    Article  Google Scholar 

  3. G. Pourcelly and L. Bazinet, “Developments of bipolar membrane technology in food and bio-industries,” in Handbook of Membrane Separations: Chemical, Pharmaceutical and Biotechnological Applications, Ed. by A. K. Pabby, S. S. H. Rizvi, and A. M. Sastre (CRC, Boca Raton, 2008), pp. 581–657.

    Chapter  Google Scholar 

  4. Handbook of Membrane Separations: Chemical, Pharmaceutical and Biotechnological Applications, Ed. by A. K. Pabby, S. S. H. Rizvi, and A. M. Sastre (CRC, Boca Raton, 2009), pp. 581–633.

  5. H. Strathmann, A. Grabowski, and G. Eigenberger, “Ion-exchange membranes in the chemical process industry,” Ind. Eng. Chem. Res. 52, 10364–10379 (2013).

    Article  Google Scholar 

  6. A. Volkov, V. Vasilevsky, S. Bazhenov, V. Volkov, A. Rieder, S. Unterberger, and B. Schallert, Energy Proc. 51, 148–153 (2014).

    Article  Google Scholar 

  7. S. Bazhenov, A. Rieder, B. Schallert, V. Vasilevsky, S. Unterberger, E. Grushevenko, V. Volkov, and A. Volkov, Int. J. Greenhouse Gas Control 42, 593–601 (2015).

    Article  Google Scholar 

  8. V. M. Vorotyntsev, Petrol. Chem. 55, 259 (2015).

    Article  Google Scholar 

  9. E. Yu. Safronova and A. B. Yaroslavtsev, Petrol. Chem. 56, 281 (2016).

    Article  Google Scholar 

  10. G. Pourcelly, Petrol. Chem. 51, 480 (2011).

    Article  Google Scholar 

  11. I. A. Stenina, E. Yu. Safronova, A. V. Levchenko, Yu. A. Dobrovol’skii, and A. B. Yaroslavtsev, Therm. Eng. 63, 385 (2016).

    Article  Google Scholar 

  12. T. Xu, J. Membr. Sci. 263, 1–29 (2005).

    Article  Google Scholar 

  13. A. B. Yaroslavtsev, Polymer Sci., Ser. A 55, 674 (2013).

    Article  Google Scholar 

  14. A. B. Yaroslavtsev, Yu. A. Karavanova, and E. Yu. Safronova, Petrol. Chem. 51, 473 (2011).

    Article  Google Scholar 

  15. A. B. Yaroslavtsev, Nanotechnol. Russ. 7, 437 (2012).

    Article  Google Scholar 

  16. S. A. Novikova, E. I. Volodina, N. D. Pis’menskaya, A. G. Veresov, I. A. Stenina, and A. B. Yaroslavtsev, Russ. J. Electrochem. 41, 1070 (2005).

    Article  Google Scholar 

  17. N. P. Berezina, N. A. Kononenko, G. A. Dvorkina, and N. V. Shel’deshov, Physicochemical Properties of Ion Exchanger Materials, Practical Guide (Kuban. Gos. Univ., Krasnodar, 1999), p. 82 [in Russian].

    Google Scholar 

  18. N. P. Berezina, N. A. Kononenko, G. A. Dvorkina, and N. V. Shel’deshov, Physicochemical Properties of Ion Exchanger Materials, Practical Guide (Kuban. Gos. Univ., Krasnodar, 1999), p. 68 [in Russian].

    Google Scholar 

  19. T. D. Gierke, G. E. Munn, and F. C. Wilson, J. Polym. Sci.: Polym. Phys. Ed. 19, 1687–1704 (1981).

    Google Scholar 

  20. W. Y. Hsu and T. D. Gierke, J. Membr. Sci. 13, 307 (1983).

    Article  Google Scholar 

  21. D. J. Jones and J. Roziere, Handbook of Fuel Cells: Fundamentals, Technology and Applications, Vol. 3: Fuel Cell Technology and Applications, Ed. by W. Vielstich, H. A. Gasteiger, and A. Lamm (Wiley, 2003).

  22. A. B. Yaroslavtsev and V. V. Nikonenko, Nanotechnol. Russ. 4, 137 (2009).

    Article  Google Scholar 

  23. E. Yu. Safronova and A. B. Yaroslavtsev, Russ. J. Inorg. Chem. 55, 1499 (2010).

    Article  Google Scholar 

  24. E. V. Kuznetsova, E. Yu. Safronova, V. K. Ivanov, G. Yu. Yurkov, and Ya. B. Yaroslavtsev, Petrol. Chem. 51, 652 (2011).

    Article  Google Scholar 

  25. Yu. A. Karavanova and A. B. Yaroslavtsev, Inorg. Mater. 46, 789 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Karavanova.

Additional information

Original Russian Text © P.A. Yurova, Yu.A. Karavanova, I.A. Stenina, A.B. Yaroslavtsev, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurova, P.A., Karavanova, Y.A., Stenina, I.A. et al. Synthesis and studies on the diffusion properties of MK-40 cation-exchange membranes modified with ceria. Nanotechnol Russia 11, 761–765 (2016). https://doi.org/10.1134/S1995078016060215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016060215

Navigation