Skip to main content
Log in

Degradation of Pt/C electrocatalysts having different morphology in low-temperature PEM fuel cells

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The electrochemical degradation of platinum–carbon catalysts with different morphology has been studied under model conditions in low-temperature proton exchange membrane fuel cells. It has been found that catalysts with an average size of platinum nanoparticles ranging from 2 to 3 nm uniformly distributed over the carbon support exhibit the best current–voltage characteristics; however, they have also the highest degradation rate. It is shown that the main cause of Pt/C electrocatalyst degradation consists of both the detachment of small platinum particles from the carbon support and the recrystallization of platinum, leading to an increase in the average particle size. On the contrary, the catalysts having the initial average size of platinum particles ranging from 3 to 4 nm show a considerable stability in current–voltage characteristics even after 10000 cycles of accelerated degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Ed. by J. Zhang (Springer, London, 2008).

  2. S. Mukerjee and J. McBreen, “Effect of particle size on the electrocatalysis by carbon supported pt electrocatalysts: an in situ XAS investigation,” J. Electroanal. Chem. 448, 163 (1998).

    Article  Google Scholar 

  3. R. E. Benfield, “Mean coordination numbers and the non-metal-metal transition in clusters,” J. Chem. Soc. Faraday Trans. 88, 1107 (1992).

    Article  Google Scholar 

  4. Modern Aspects of Electrochemistry, Ed. by K. Kinoshita, J. O. Bockris, B. E. Conway, and R. E. White (Wiley, New York, 1982), Vol. 12, p. 557 (1982).

  5. S. Mukerjee, “In-situ X-ray absorption spectroscopy of carbon-supported Pt and Pt alloy electro catalysts: correlation of electrocatalytic activity with particle size and alloying,” in Catalysis and Electro Catalysis at Nanoparticle Surfaces, Ed. by A. Wieckowski, E. R. Savinova, and C. G. Vayenas (Marcel Dekker, New York, 2003), p. 501.

    Google Scholar 

  6. J. Lipkowski and P. N. Ross, Frontiers in Electrochemistry (Wiley-VCH, New York, 1998).

    Google Scholar 

  7. L. Gan, H. Du, B. Li, and F. Kang, “The effect of particle size on the interaction of Pt catalyst particles with a carbon black support,” New Carbon Mater. 25 (1), 53 (2010).

    Article  Google Scholar 

  8. K. Makino, M. Chibo, and T. Koido, “Size-dependent activity of platinum nanoparticles for oxygen reduction reaction in a PEFC with a multiscale approach,” Meet. Abstr. Electrochem. Soc. 647, 1002 (2010).

    Google Scholar 

  9. E. V. Gerasimova, N. G. Bukun, and Yu. A. Dobrovolsky, “Electrocatalytic properties of the catalysts based on carbon nanofibers with various platinum contents,” Russ. Chem. Bull. 60, 1045 (2011).

    Article  Google Scholar 

  10. I. N. Leontyev, D. Yu. Chernyshov, V. E. Guterman, E. V. Pakhomova, and A. V. Guterman, “Particle size effect in carbon supported Pt-Co alloy electrocatalysts prepared by the borohydride method: XRD characterization,” Appl. Catal. A: Gen. 357, 1 (2009).

    Article  Google Scholar 

  11. N. M. Markovic, H. A. Gasteiger, and P. N. Ross, “Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: rotating ring Pt(Hkl) disk studies,” J. Phys. Chem. 100 (16), 6715 (1996).

    Article  Google Scholar 

  12. N. M. Markovic, T. J. Schmidt, V. Stamenkovic, and P. N. Ross, “Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review,” Fuel Cells 1 (2), 105 (2001).

    Article  Google Scholar 

  13. O. V. Cherstiouk, A. N. Gavrilov, L. M. Plyasova, I. Yu.Molina, G. A. Tsirlina, and E. R. Savinova, “Influence of structural defects on the electrocatalytic activity of platinum,” Solid State Electrochem. 12, 497 (2008).

    Article  Google Scholar 

  14. A. M. Skundin, “Structural factors in electrocatalysis,” Itogi Nauki Tekh., Elektrokhim. 18, 228 (1982).

    Google Scholar 

  15. A. T. Gee, B. E. Hayden, C. Mormiche, and T. S. Nunney, “The role of steps in the dynamics of hydrogen dissociation on Pt(533),” J. Chem. Phys. 112, 7660 (2000).

    Article  Google Scholar 

  16. N. P. Lebedeva, M. T. M. Koper, J. M. Feliu, and R. A. van Santen, “Role of crystalline defects in electrocatalysis: mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes,” J. Phys. Chem. B 106, 12938 (2002).

    Article  Google Scholar 

  17. T. H. M. Housmans and M. T. M. Koper, “Methanol oxidation on stepped Pt[n(111) × (110)] electrodes: a chronoamperometric study,” J. Phys. Chem. B 107 (33), 8557 (2003).

    Article  Google Scholar 

  18. J. P. Meyers and R. M. Darling, “Model of carbon corrosion in PEM fuel cells,” J. Electrochem. Soc. 153, A1432 (2006).

    Article  Google Scholar 

  19. R. L. Borup, J. R. Davey, F. H. Garzon, D. L. Wood, P. M. Welch, and K. More, “PEM fuel cell durability with transportation transient operation,” ECS Trans. 3, 879 (2006).

    Article  Google Scholar 

  20. S. D. Knights, K. M. Colbow, J. St-Pierre, and D. P. Wilkinson, “Aging mechanisms and lifetime of PEFC and DMFC,” J. Power Sources 127, 127 (2002).

    Article  Google Scholar 

  21. S. C. Ball, S. L. Hudson, D. Thompsett, and B. Theobald, “An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures,” J. Power Sources 171, 18 (2007).

    Article  Google Scholar 

  22. H. R. Colon-Mercado and B. N. Popov, “Stability of platinum based alloy cathode catalysts in PEM fuel cells,” J. Power Sources 155 (2), 253 (2006).

    Article  Google Scholar 

  23. S. Chen, H. A. Gasteiger, K. Hayakawa, T. Tada, and Y. Shao-Horn, “Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: nanometer-scale compositional and morphological changes,” J. Electrochem. Soc. 157, A82 (2010).

    Article  Google Scholar 

  24. F. N. Büchi, M. Inaba, and T. J. Schmidt, Polymer Electrolyte Fuel Cell Durability (Springer, New York, 2009).

    Book  Google Scholar 

  25. R. L. Borup, J. R. Davey, F. H. Garzon, D. L. Wood, and M. A. Inbody, “PEM fuel cell electrocatalyst durability measurements,” J. Power Sources 163, 76 (2006).

    Article  Google Scholar 

  26. L. Tang, B. Han, K. Persson, C. Friesen, T. He, K. Sieradzki, and G. Ceder, “Electrochemical stability of nanometer-scale Pt particles in acidic environments,” J. Am. Chem. Soc. 132 (2), 596 (2009).

    Article  Google Scholar 

  27. S. G. Rinaldo, J. R. Stumpern, and M. Eikerling, “Physical theory of platinum nanoparticle dissolution in polymer electrolyte fuel cells,” J. Phys. Chem. C 114 (13), 5773 (2010).

    Article  Google Scholar 

  28. R. M. Darling and J. P. Meyers, “Mathematical model of platinum movement in PEM fuel cells,” J. Electrochem. Soc. 152 (1), A242 (2005).

    Article  Google Scholar 

  29. J. C. Meier, C. Galeano, I. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schuth, and K. J. J. Mayrhofer, “Design criteria for stable Pt/C fuel cell catalysts,” Beilstein J. Nanotechnol. 5, 44 (2014).

    Article  Google Scholar 

  30. L. M. Roen, C. H. Paik, and T. D. Jarvi, “Electrocatalytic corrosion of carbon support in PEMFC cathodes,” Electrochem. Solid State Lett. 7 (1), A19 (2005).

    Article  Google Scholar 

  31. J. C. Meier, C. Galeano, I. Katsounaros, A. A. Topalov, A. Kostka, F. Schüth, and K. J. J. Mayrhofer, “Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions,” ACS Catal. 2, 832 (2012).

    Article  Google Scholar 

  32. O. Yu. Ivan’shina, M. E. Tamm, E. V. Gerasimova, M. P. Kochugaeva, M. N. Kirikova, S. V. Savilov, and L. V. Yashina, “Synthesis and electrocatalytic activity of platinum nanoparticle/carbon nanotube composites,” Inorg. Mater. 47, 618 (2011).

    Article  Google Scholar 

  33. U.S. Drive fuel cell tech team cell component accelerated stress test and polarization curve protocols for PEM fuel cells. http://energy.gov/sites/prod/files/2015/08/f25/fcto_dwg_usdrive_fctt_accelerated_stress_tests_jan2013.pdf. Cited January 2013.

  34. V. B. Avakov, V. A. Bogdanovskaya, V. A. Vasilenko, B. A. Ivanitskii, E. M. Kol’tsova, A. V. Kuzov, A. V. Kapustin, I. K. Landgraf, M. M. Stankevich, M. R. Tarasevich, “Characteristics of HiSPEC13100-catalyst-based cathode (70Pt/C) for hydrogen-air fuel cell with proton-conducting polymer electrolyte,” Russ. J. Electrochem. 51, 719 (2015).

    Article  Google Scholar 

  35. D. R. Lowde, J. O. Williams, and B. D. McNicol, “The characterization of catalyst surfaces by cyclic voltammetry,” Appl. Surf. Sci. 1 (2), 215 (1978).

    Article  Google Scholar 

  36. X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, and J. Yu, “Investigation of platinum utilization and morphology in catalyst layer of polymer electrolyte fuel cells,” J. Power Sources 79, 75 (1999).

    Article  Google Scholar 

  37. J. Speder, A. Zana, I. Spanos, J. J. K. Kirkensgaard, K. Mortensen, M. Hanzlik, and M. Arenz, “Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts—the influence of the platinum to carbon ratio on the degradation rate,” J. Power Sources 162, 14 (2014).

    Article  Google Scholar 

  38. Y. Zhang, S. Chen, Y. Wang, D. Wei, R. Wu, L. Li, X. Qi, and Z. Wei, “Study of the degradation mechanisms of carbon-supported platinum fuel cells catalyst via different accelerated stress test,” J. Power Sources 273, 62 (2015).

    Article  Google Scholar 

  39. T. A. Kravchenko, E. V. Zolotukhina, M. Yu. Chaika, and A. B. Yaroslavtsev, Electrochemistry of Metal-Ion Exchanger Nanocomposites (Nauka, Moscow, 2013) [in Russian].

    Google Scholar 

  40. V. M. Samsonov, A. N. Basulev, and N. Yu. Sdobnyakov, “On applicability of the gibbs thermodynamic to nanoparticles,” Centr. Eur. J. Phys. 3, 474 (2003).

    Google Scholar 

  41. A. B. Yaroslavtsev, Yu. A. Dobrovolsky, N. S. Shaglaeva, L. A. Frolova, E. V. Gerasimova, and E. A. Sanginov, “Nanostructured materials for low-temperature fuel cells,” Russ. Chem. Rev. 81 (3), 191 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Zolotukhina.

Additional information

Original Russian Text © V.I. Pavlov, E.V. Gerasimova, E.V. Zolotukhina, G.M. Don, Yu.A. Dobrovolsky, A.B. Yaroslavtsev, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavlov, V.I., Gerasimova, E.V., Zolotukhina, E.V. et al. Degradation of Pt/C electrocatalysts having different morphology in low-temperature PEM fuel cells. Nanotechnol Russia 11, 743–750 (2016). https://doi.org/10.1134/S199507801606015X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199507801606015X

Navigation