Skip to main content
Log in

Optimization of physicochemical conditions to produce silver nanoparticles and estimation of the biological effects of colloids synthesized

  • Published:
Nanotechnologies in Russia Aims and scope Submit manuscript

Abstract

The results of our study of the size, optical properties, and aggregate stability of silver nanoparticles in aqueous solutions 1, 2, and 12 months after their synthesis are reported. It has been shown that nanoparticles synthesized using a combined application of physical factors, such as ultraviolet radiation, ultrasound, and uniform mixing (providing conditions of isolation from the atmospheric air) are smaller in size (from 1 to 10 nm) and have more homogenous distribution of the diameter of nanoparticles. A lower aggregation has been noted compared with particles prepared without observing the synthesis algorithm that was developed and conditions given above. The results of studying antimicrobial antiseptic properties based on a colloidal nanosilver solution prepared using the technology of diffusion-cavitation photochemical reduction of silver nitrate are also reported. A high antimicrobial activity of the resulting colloidal solution with silver nanoparticles against clinical isolates of P. aeruginosa, A. baumanii, and E. coli has been demonstrated as compared with the original silver nitrate and the ligand (polyvinylpyrrolidone) used in the synthesis of the colloid at the same concentration. At a concentration of 10 μg/mL, a colloidal solution with silver nanoparticles has been found to possess bactericidal activity against two isolates of P. aeruginosa, three isolates of A. baumanii, and five isolates of E. coli. At a concentration of 1 μg/mL, the colloidal solution of silver nanoparticles has possessed only bacteriostatic activity against all isolates of the bacteria. The minimum bacteriostatic inhibitory concentration of nanosilver has determined to be 3 μg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Andreeva and O. U. Stetsyuk, “Allergic reactions to antibiotics,” Klin. Farmakol. Terap. 22 (2), 5–10 (2013).

    Google Scholar 

  2. V. Ya. Baranov and V. I. Frolov, Electrokinetic Phenomena, The School-Book (Moscow, 2007), p. 163 [in Russian].

    Google Scholar 

  3. A. A. Basov, V. V. Malyshko, S. R. Fedosov, Yu. P. Savchenko, R. V. Vlasov, and K. N. Chernobai, “Device for silver nanoparticle production,” RF Patent No. 150504, Byull. Izobret. No. 5 (2015).

    Google Scholar 

  4. A. V. Blinov, A. A. Blinova, A. V. Serov, A. G. Khramtsov, and D. O. Naberezhnyi, “Study of stability of silver nanoparticles concentrate in different media,” in Proceedings of the 4th International Scientific-Practical Conference on Actual Problems of Modern Science (2015), pp. 393–396.

    Google Scholar 

  5. A. V. Vegera and A. D. Zimon, “Synthesis and physicochemical properties of silver nanoparticles stabilized by gelatin,” Izv. Tomsk. Politekh. Univ. 309 (5), 60–63 (2006).

    Google Scholar 

  6. O. Yu. Golubeva, O. V. Shamova, D. S. Orlov, T. Yu. Pazina, A. S. Boldina, I. A. Drozdova, and V. N. Kokryakov, “Synthesis and study of antimicrobial activity of bioconjugates of silver nanoparticles and endogenous antibiotics,” Glass Phys. Chem. 37, 78 (2011).

    Article  Google Scholar 

  7. S. Zhabaeva, G. N. Osmonkanova, and A. B. Zhunusov, “Study of silver nanosized sol by electron spectroscopy method,” Izv. Vyssh. Uchebn. Zaved. Kyrgyzstana, No. 5, 88–90 (2014).

    Google Scholar 

  8. E. V. Zolotukhina, T. A. Kravchenko, and S. V. Peshkov, “Method of silver nanoparticle production,” RF Patent No. 2385293, Byull. Izobret. No. 9 (2010).

    Google Scholar 

  9. K. N. Kasanov, V. A. Popov, R. A. Evseev, V. A. Andreev, A. I. Vezentsev, N. F. Ponomareva, Yu. A. Ignat’eva, M. V. Uspenskaya, and A. K. Khripunov, “Montmorillonite modified by silver: preparation, antimicrobial activity and medical application in bioactive wound coverings,” Nauch. Vedom. Belgor. Univ., Ser.: Med. Farm. 23 (18), 188–197 (2013).

    Google Scholar 

  10. K. K. Koshelev, O. K. Kosheleva, M. G. Svistunov, and V. P. Pautov, “Production method of concentrates of zero-valence metal nanodispersions with antiseptic properties,” RF Patent No. 2445951, Byull. Izobret. No. 9 (2010).

    Google Scholar 

  11. Yu. A. Krutyakov, A. Yu. Olenin, A. A. Kudrinskii, P. S. Dzhurik, and G. V. Lisichkin, “Aggregative stability and polydispersity of silver nanoparticles prepared using two-phase aqueous organic systems,” Nanotechnol. Russ. 3, 303 (2008).

    Article  Google Scholar 

  12. M. V. Kuznetsova, T. I. Karpunina, N. V. Nikolaeva, I. M. Chepurnaya, N. S. Avdeeva, and S. V. Provorova, “Pseudomonas aeruginosa in spectra of microbial cultures isolated from patiens in different hospitals,” Al’man. Klin. Med., No. 27, 50–57 (2012).

    Google Scholar 

  13. M. V. Lesnichaya, G. P. Aleksandrova, L. P. Feoktistova, A. N. Sapozhnikov, T. V. Fadeeva, B. G. Sukhov, and B. A. Trofimov, “Silver-containing nanocomposites based on galactomannan and carrageenan: synthesis, structure, and antimicrobial properties,” Russ. Chem. Bull. 59, 2323 (2010).

    Article  Google Scholar 

  14. A. I. Mikhienkova and Yu. P. Mukha, “Characteristics and stability of antimicrobial effect of silver nanoparticles in colloidal solutions,” Environ. Health, No. 1, 55–59 (2011).

    Google Scholar 

  15. O. V. Mosin and I. Ignatov, “Composition materials based on fine silver nanoparticles,” Stroit. Mater., Oborud., Tekhnol. XXI Veka, No. 3 (194), 21–23 (2015).

    Google Scholar 

  16. MUK 4.2.1890-04, “Guidelines for determining the sensitivity of microorganisms to antibiotics” (Fed. Tsentr Gossanepidnadzora Minzdrava Rossii, Moscow, 2004) [in Russian].

  17. Yu. P. Mukha, A. M. Eremenko, N. P. Smirnova, A. I. Mikhienkova, G. I. Korchak, V.F. Gorchev, and A. Yu. Chunikhin, “Antimicrobial activity of stable silver nanoparticles of a certain size,” Appl. Biochem. Microbiol. 49, 199 (2013).

    Article  Google Scholar 

  18. A. A. Parsaev, E. V. Abkhalimov, E. E. Yakimova, and B. G. Ershov, “Production of silver nanoparticles in aqueous solutions with carbonate-ions,” Vestn. Mosk. Inst. Tonk. Khim. Tekhnol. 5 (5), 24–26 (2010).

    Google Scholar 

  19. E. N. Petritskaya, L. F. Abaeva, D. A. Rogatkin, K. S. Litvinova, and M. A. Bobrov, “On the problem of silver nanoparticles toxicity after oral administration of colloidal solution,” Al’man. Klin. Med., No. 25, 9–12 (2011).

    Google Scholar 

  20. K. V. Shpynev, O. I. Krechikova, V. A. Krechikov, and R. S. Kozlov, “Streptococcus pyogenes: characteristics of the pathogen, isolation, identification and susceptibility testing,” Klin. Mikrobiol. Antimikrob. Khimioter. 9 (2), 104–120 (2007).

    Google Scholar 

  21. I. A. Shurygina, M. G. Shurygin, L. A. Dmitrieva, T. V. Fadeeva, T. V. Ganenko, A. P. Tantsyrev, A. N. Sapozhnikov, B. G. Sukhov, and B. A. Trofimov, “Bacterio-and lymphocytotoxicity of silver nanocomposite with sulfated arabinogalactan,” Russ. Chem. Bull. 64, 1629 (2015).

    Article  Google Scholar 

  22. T. A. Banks, R. A. Ressner, and S. M. Gada, “Antibiotic reclamation: penicillin allergy, antibiotic stewardship, and the allergist,” Ann. Allergy, Asthma Immunol. 115, 451–452 (2015).

    Article  Google Scholar 

  23. F. D. Carolin, A. V. Gorovtsov, S. F. Nadine, and K.Ewa, “Comparing the growth inhibition rate of modern antiseptics on e.coli, staphylococcusaureus and pseudomonasaeruginosa with a view to their use for infected wounds,” Fundam. Issled., No. 10 (2), 321–327 (2013).

    Google Scholar 

  24. M. J. Catalina and M. V. Eric, “A review of the antibacterial effects of silver nanomaterials and potential implications for human healthand the environment,” J. Nanopart. Res. 12, 1531–1551 (2010).

    Article  Google Scholar 

  25. A. A. Hebeish, M. A. Ramadan, A. S. Montaser, and A. M. Farag, “Preparation, characterization and antibacterial activity of chitosan-g-poly acrylonitrile/silver nanocomposite,” Int. J. Biol. Macromol. 68, 178–184 (2014).

    Article  Google Scholar 

  26. D. J. Leaper, “Risk factors for and epidemiology of surgical site infections,” Surg. Infect. 11, 283–287 (2010).

    Article  Google Scholar 

  27. D. McShan, P. C. Ray, and H. Yu, “Molecular toxicity mechanism of nanosilver,” J. Food Drug Anal. 22, 116–127 (2014).

    Article  Google Scholar 

  28. S. Mahendra, Q. Li, D. Y. Lyon, L. Brunet, and P. J. J. Alvarez, “Enabled water disinfection and microbial control: merits and limitations,” in Nanotechnology Applications for Clean Water: Solutions for Improving Water Quality, Ed. by A. Street, R. Sustich, J. Duncan, and N. Savage, 2nd ed. (Elsevier, Amsterdam, 2014), pp. 319–327.

    Chapter  Google Scholar 

  29. R. B. Naddy, G. R. McNerney, J. W. Gorsuch, R. A. Bell, J. R. Kramer, K. B. Wu, and P. R. Paquin, “The effect of food on the acute toxicity of silver nitrate to four freshwater test species and acute-to-chronic ratios,” Ecotoxicology 20, 2019–2029 (2011).

    Article  Google Scholar 

  30. F. Okafor, A. Janen, T. Kukhtareva, V. Edwards, and M. Curley, “Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity,” Int. J. Environ Res. Public Health 10, 5221–5238 (2013).

    Article  Google Scholar 

  31. S. Pal, Y. K. Tak, and J. M. Song, “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium escherichia coli,” Appl. Environ. Microbiol. 73, 1712–1720 (2007).

    Article  Google Scholar 

  32. J. W. Savage and P. A. Anderson, “An update on modifiable factors to reduce the risk of surgical site infections,” Spine J. 13, 1017–1029 (2013).

    Article  Google Scholar 

  33. K. Shameli, M. B. Ahmad, M. Zargar, W. Yunus, N. A. Ibrahim, P. Shabanzadeh, and M. G. Moghaddam, “Synthesis and characterization of silver/montmorillonite/chitosan bionanocomposites by chemical reduction method and their antibacterial activity,” Int. J. Nanomed., No. 6, 271–284 (2011).

    Article  Google Scholar 

  34. A. Taglietti, C. R. Arciola, A. D’Agostino, G. Dacarro, L. Montanaro, D. Campoccia, L. Cucca, M. Vercellino, A. Poggi, P. Pallavicini, and L. Visai, “Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface,” Biomaterials 35, 1779–1788 (2014).

    Article  Google Scholar 

  35. J. Wright and D. S. Paauw, “Complications of antibiotic therapy,” Med. Clin. North Am. 97, 667–679 (2013).

    Article  Google Scholar 

  36. C. Wang, Y. J. Kim, P. Singh, R. Mathiyalagan, Y. Jin, and D. C. Yang, “Green synthesis of silver nanoparticles by bacillus methylotrophicus, and their antimicrobial activity,” Artif. Cells Nanomed. Biotechnol., No. 6, 1–6 (2015).

    Google Scholar 

  37. Z.-M. Xiu, J. Ma, and P. J. Alvarez, “Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions,” Environ. Sci. Technol. 45 (20), 9003–9008 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Dzhimak.

Additional information

Original Russian Text © S.S. Dzhimak, M.E. Sokolov, A.A. Basov, S.R. Fedosov, V.V. Malyshko, R.V. Vlasov, O.M. Lyasota, M.G. Baryshev, 2016, published in Rossiiskie Nanotekhnologii, 2016, Vol. 11, Nos. 11–12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzhimak, S.S., Sokolov, M.E., Basov, A.A. et al. Optimization of physicochemical conditions to produce silver nanoparticles and estimation of the biological effects of colloids synthesized. Nanotechnol Russia 11, 835–841 (2016). https://doi.org/10.1134/S1995078016060082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995078016060082

Navigation