Skip to main content
Log in

Determination of the Spatial Structure of Lidocaine in SC-CO2 by the 2D NOESY Method

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This work presents an analysis of the lidocaine spatial structure in SC-CO2. Two-dimensional nuclear Overhauser effect spectroscopy (2D NOESY) and quantum chemical calculations (DFT) were used to identify the preferable conformers in an SC-CO2 solution (70°C, 20 MPa). The data obtained in this work can be used to calculate the optimal micronization parameters by the RESS method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. López-Iglesias, C. Quílez, J. Barros, D. Velasco, C. Alvarez-Lorenzo, J. L. Jorcano, F. J. Monteiro, and C. A. García-González, Pharmaceutics 12 (9), 1 (2020).

    Article  Google Scholar 

  2. S. M. Ghoreishi and S. Komeili, J. Supercrit. Fluids 50, 183 (2009).

    Article  CAS  Google Scholar 

  3. R. D. Oparin, Y. A. Vaksler, M. A. Krestyaninov, A. Idrissi, and M. G. Kiselev, J. Mol. Liq. 323, 114630 (2021).

    Article  CAS  Google Scholar 

  4. R. D. Oparin, Y. A. Vaksler, M. A. Krestyaninov, A. Idrissi, and M. G. Kiselev, J. Mol. Liq. 330, 115657 (2021).

    Article  CAS  Google Scholar 

  5. K. B. Ustinovich, V. V. Ivanov, Y. M. Tokunov, A. A. Loshkarev, N. I. Sapronova, A. M. Vorobei, O. O. Parenago, and M. G. Kiselev, Molecules 25, 4061 (2020).

    Article  CAS  Google Scholar 

  6. A. A. Dyshin, G. V. Bondarenko, and M. G. Kiselev, Russ. J. Phys. Chem. B 13, 1182 (2019).

    Article  CAS  Google Scholar 

  7. L. A. Laplanche, G. Vanderkooi, H. Jasmani, and M. M. Suki, Magn. Reson. Chem. 23, 945 (1985).

    Article  CAS  Google Scholar 

  8. P. D. McMaster, V. J. Noris, C. E. Stankard, E. W. Byrnes, and P. R. Guzzo, Pharm. Res. Off. J. Am. Assoc. Pharm. Sci. 8, 1013 (1991).

    CAS  Google Scholar 

  9. I. Khodov, S. Efimov, M. Krestyaninov, and M. Kiselev, J. Pharm. Sci. 110, 1533 (2021).

    Article  CAS  Google Scholar 

  10. C. R. Jones, M. D. Greenhalgh, J. R. Bame, T. J. Simpson, R. J. Cox, J. W. Marshall, and C. P. Butts, Chem. Commun. 52, 2920 (2016).

    Article  CAS  Google Scholar 

  11. C. P. Butts, C. R. Jones, E. C. Towers, J. L. Flynn, L. Appleby, and N. Barron, J. Org. Biomol. Chem. 9, 177 (2011).

    Article  CAS  Google Scholar 

  12. C. P. Butts, C. R. Jones, Z. Song, and T. J. Simpson, Chem. Commun. 48, 9023 (2012).

    Article  CAS  Google Scholar 

  13. H.-C. Xu, K. Hu, X.-H. Shi, J.-W. Tang, X.-N. Li, H.-D. Sun, and P.-T. Puno, Org. Chem. Front. 6, 1619 (2019).

    Article  CAS  Google Scholar 

  14. S. I. Selivanov, S. Wang, A. S. Filatov, and A. V. Stepakov, Appl. Magn. Reson. 51, 165 (2020).

    Article  CAS  Google Scholar 

  15. J. Bame, C. Hoeck, M. J. Carrington, C. P. Butts, C. M. Jäger, and A. K. Croft, Phys. Chem. Chem. Phys. 20, 7523 (2018).

    Article  CAS  Google Scholar 

  16. S. I. Selivanov and A. G. Shavva, Russ. J. Bioorg. Chem. 28, 194 (2002).

    Article  CAS  Google Scholar 

  17. S. I. Selivanov, A. Y. Solov’ev, S. N. Morozkina, and A. G. Shavva, Russ. J. Bioorg. Chem. 33, 302 (2007).

    Article  CAS  Google Scholar 

  18. P. P. Kobchikova, S. V. Efimov, I. A. Khodov, and V. V. Klochkov, J. Mol. Liq. 336, 116244 (2021).

    Article  CAS  Google Scholar 

  19. I. A. Khodov, K. V. Belov, S. V. Efimov, and L. A. E. B. de Carvalho, AIP Conf. Proc. 2063, 040007 (2019).

    Article  Google Scholar 

  20. I. A. Khodov, M. G. Kiselev, S. V. Efimov, and V. V. Klochkov, J. Magn. Reson. 266, 67 (2016).

    Article  CAS  Google Scholar 

  21. I. A. Khodov, S. V. Efimov, V. V. Klochkov, L. A. E. Batista de Carvalho, and M. G. Kiselev, J. Mol. Struct. 1106, 373 (2016).

    Article  CAS  Google Scholar 

  22. S. V. Efimov, I. A. Khodov, E. L. Ratkova, M. G. Kiselev, S. Berger, and V. V. Klochkov, J. Mol. Struct. 1104, 63 (2016).

    Article  CAS  Google Scholar 

  23. I. A. Khodov, S. V. Efimov, M. Y. Nikiforov, V. V. Klochkov, and N. Georgi, J. Pharm. Sci. 103, 392 (2014).

    Article  CAS  Google Scholar 

  24. G. A. Gamov, I. A. Khodov, K. V. Belov, M. N. Zavalishin, A. N. Kiselev, T. R. Usacheva, and V. A. Sharnin, J. Mol. Liq. 283, 825 (2019).

    Article  CAS  Google Scholar 

  25. I. Khodov, A. Dyshin, S. Efimov, D. Ivlev, and M. Kiselev, J. Mol. Liq. 309, 113113 (2020).

    Article  CAS  Google Scholar 

  26. R. D. Oparin, K. V. Belov, I. A. Khodov, A. A. Dyshin, and M. G. Kiselev, Russ. J. Phys. Chem. B. 15, 1157 (2021).

  27. M. Liu, X. A. Mao, C. Ye, H. Huang, J. K. Nicholson, and J. C. Lindon, J. Magn. Reson. 132, 125 (1998).

    Article  CAS  Google Scholar 

  28. H. Kessler, H. Oschkinat, C. Griesinger, and W. Bermel, J. Magn. Reson. 70, 106 (1986).

    CAS  Google Scholar 

  29. J. Stonehouse, P. Adell, A. J. Shaka, and J. Keeler, J. Am. Chem. Soc. 116, 6037 (1994).

    Article  CAS  Google Scholar 

  30. K. Stott, J. Keeler, T. L. Hwang, A. J. Shaka, and J. Stonehouse, J. Am. Chem. Soc. 117, 4199 (1995).

    Article  CAS  Google Scholar 

  31. M. J. Thrippleton and J. Keeler, Angew. Chem., Int. Ed. 42, 3938 (2003).

    Article  CAS  Google Scholar 

  32. H. M. Badawi, W. Förner, and S. A. Ali, Spectrochim. Acta, Part A 142, 382 (2015).

    Article  CAS  Google Scholar 

  33. I. A. Khodov, M. Y. Nikiforov, G. A. Alper, D. S. Blo-khin, S. V. Efimov, V. V. Klochkov, and N. Georgi, J. Mol. Struct. 1035, 358 (2013).

    Article  CAS  Google Scholar 

  34. I. A. Khodov, S. V. Efimov, V. V. Klochkov, G. A. Alper, and L. A. E. Batista de Carvalho, Eur. J. Pharm. Sci. 65, 65 (2014).

    Article  CAS  Google Scholar 

  35. K. V. Belov, I. E. Eremeev, V. V. Sobornova, V. V. Klochkov, and I. A. Khodov, Macroheterocycles 13 (1), 44 (2020).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation, Russia (contracts nos. 01201260481 and 0120095082), by the Russian Foundation for Basic Research (M.K., grant nos. 18-29-06008 and 20-43-370011) and Council for Grants of the President of the Russian Federation, Russia (I.K., project МК-662.2021.1.3). The NMR spectroscopy experiment was performed using the molecular fluid spectroscopy facility (http://www.ckp-rf.ru/usu/503933/) of G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences (ISC RAS), Ivanovo, Russia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Khodov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belov, K.V., Dyshin, A.A., Kiselev, M.G. et al. Determination of the Spatial Structure of Lidocaine in SC-CO2 by the 2D NOESY Method. Russ. J. Phys. Chem. B 15, 1303–1309 (2021). https://doi.org/10.1134/S1990793121080145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793121080145

Keywords:

Navigation