Skip to main content
Log in

Composite Ultrathin Fibers of Poly-3-Hydroxybutyrate and a Zinc Porphyrin: Structure and Properties

  • Physical Methods for Studying Chemical Reactions
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Ultrathin fibers of poly-3-hydroxybutyrate (P3HB), a biodegradable polymer, modified by addition of a zinc porphyrin (content up to 5% with respect to P3HB), are prepared by electrospinning. The f ibers are investigated by differential scanning calorimetry, spin-probe electron paramagnetic resonance, scanning electron microscopy, and IR spectroscopy. We show that P3HB fibers modified with the porphyrin complex exhibit superior crystallinity and retardation of molecular motion in the amorphous regions of polymer. Subjecting the fibers to heat treatment at 140°C results in drastic increases in crystallinity and molecular motion in the amorphous regions of pure P3HB and P3HB, which contain 1% of the porphyrin complex. At a porphyrin content of 3%, a sharp drop in crystallinity of P3HB fibers is observed. The effects that aqueous thermal treatment at 70°C has on the structure and dynamics of our ultrathin fibers suggest that the processed samples become more crystalline. The molecular motion in the prepared fibers slows down as a result of relatively short (up to 100 min) ozone treatment, whereas the molecular motion intensifies at more advanced degrees of oxidation of the fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. B. Solov’eva, V. E. Belyaev, N. N. Glagolev, V. I. Volkov, V. N. Luzgina, G. V. Vstovskii, and S. F. Timashev, Russ. J. Phys. Chem. A 79, 635 (2005).

    Google Scholar 

  2. A. V. Chudinov, V. D. Rumyantseva, A. V. Lobanov, G. K. Chudinova, A. A. Stomakhin, and A. F. Mironov, Russ. J. Bioorg. Chem. 30, 89 (2004).

    Article  CAS  Google Scholar 

  3. L. Kong and G. R. Ziegler, Biomacromolecules 13, 2247 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. J. D. Schiffman and C. A. Schauer, Polym. Rev. 48, 1080 (2008). https://doi.org/10.1080/15583720802022182

    Article  CAS  Google Scholar 

  5. G. Xie, Y. Wang, X. Han, et al., Ind. Eng. Chem. Res. 55, 7116 (2016). https://doi.org/10.1021/acs.iecr.6b00958

    Article  CAS  Google Scholar 

  6. A. Kulkarni, V. A. Bambole, and P. A. Mahanwar, Polym. Plas. Technol. Eng. 49, 427 (2010).

    Article  CAS  Google Scholar 

  7. Y. Wang, J. Pan, X. Han, et al., Biomaterials 29, 3393 (2008). https://doi.org/10.1016/j.biomaterials.2008.04.042

    Article  CAS  PubMed  Google Scholar 

  8. J. Mergaert, A. Webb, C. Anderson, et al., Appl. Environ. Microbiol. 59, 3233 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. X. J. Loh, S. H. Goh, and J. Li, Biomaterials 28, 4113 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. I. I. Zharkova, O. V. Staroverova, V. V. Voinova, et al., Biomed. Khim. 60 (5), 553 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. S. G. Karpova, A. A. Ol’khov, A. L. Iordanskii, S. M. Lomakin, N. S. Shilkina, and A. A. Popov, Russ. J. Phys. Chem. B 10, 687 (2016).

    Article  CAS  Google Scholar 

  12. Y. Hu, H. Sato, J. Zhang, et al., Polymer 49, 4204 (2008). https://doi.org/10.1016/j.polymer.2008.07.031

    Article  CAS  Google Scholar 

  13. A. A. Ol’khov, A. L. Iordanskii, O. V. Staroverova, et al., Khim. Volokna, No. 5, 8 (2015).

    Google Scholar 

  14. S. G. Karpova, A. A. Ol’khov, N. G. Shilkina, A. A. Popov, A. G. Filatova, E. L. Kucherenko, and A. L. Iordanskii, Polymer Sci., Ser. A 59, 58 (2017). https://doi.org/10.7868/S2308112017010060

    Article  CAS  Google Scholar 

  15. A. L. Iordanskii, A. A. Ol’khov, S. G. Karpova, E. L. Kucherenko, R. Yu. Kosenko, S. Z. Rogovina, A. E. Chalykh, and A. A. Berlin, Polymer Sci., Ser. A 59, 352 (2017). https://doi.org/10.7868/S2308112017030075

    Article  CAS  Google Scholar 

  16. S. G. Karpova, A. A. Ol’khov, A. V. Bakirov, S. N. Chvalun, N. G. Shilkina, and A. A. Popov, Russ. J. Phys. Chem. B 12, 142 (2018).

    Article  CAS  Google Scholar 

  17. A. D. Adler, F. R. Longo, J. D. Finarelli, et al., Org. Chem. 32, 476 (1967).

    Article  CAS  Google Scholar 

  18. Yu. N. Filatov, Electroforming of Fibrous Materials (EFF-Process) (Neft’ i Gaz, Moscow, 1997) [in Russian].

    Google Scholar 

  19. D. E. Budil, S. Lee, S. Saxena, and J. H. Freed, J. Magn. Res. A 120, 155 (1996).

    Article  CAS  Google Scholar 

  20. V. P. Timofeev, A. Yu. Misharin, and Ya. V. Tkachev, Biophysics 56, 407 (2011).

    Article  Google Scholar 

  21. A. L. Buchachenko and A. M. Vasserman, Stable Radicals (Khimiya, Moscow, 1973) [in Russian].

    Google Scholar 

  22. J. Opfermann, Rechentech.–Datenverarbeit. 23 (3), 26 (1985).

    Google Scholar 

  23. S. Vyazovkin, N. Koga, and C. V. Schick, Handbook of Thermal Analysis and Calorimetry, Applications to Polymers and Plastics (Elsevier, Amsterdam, Boston, London, 2002).

    Google Scholar 

  24. A. N. Ozerin, Cand. Sci. (Chem.) Dissertation (Karpov Inst. Phys. Chem., Moscow, 1977) [in Russian].

    Google Scholar 

  25. S. G. Karpova, A. L. Iordanskii, N. S. Klenina, A. A. Popov, S. M. Lomakin, N. G. Shilkina, and A. V. Rebrov, Russ. J. Phys. Chem. B 7, 225 (2013).

    Article  CAS  Google Scholar 

  26. S. G. Karpova, A. A. Popov, and G. E. Zaikov, Vysokomol. Soedin. 33, 931 (1991).

    CAS  Google Scholar 

  27. S. G. Karpova, A. L. Iordanskii, and A. A. Popov, N. G. Shilkina, S. M. Lomakin, M. A. Shcherbin, S. N. Chvalun, and A. A. Berlin, Russ. J. Phys. Chem. B 6, 72 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

For evaluating the crystallinity of our samples by DSC, we used a DSC 204 F1 instrument (Netzsch, Germany) at the center of collective use “New Materials and Technologies,” Institute of Biochemical Physics, RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Karpova.

Additional information

Russian Text © The Author(s), 2019, published in Khimicheskaya Fizika, 2019, Vol. 38, No. 3, pp. 37–51.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpova, S.G., Ol’khov, A.A., Tyubaeva, P.M. et al. Composite Ultrathin Fibers of Poly-3-Hydroxybutyrate and a Zinc Porphyrin: Structure and Properties. Russ. J. Phys. Chem. B 13, 313–327 (2019). https://doi.org/10.1134/S1990793119020039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119020039

Keywords

Navigation