Skip to main content
Log in

Nuclear Magnetic Ions of Magnesium, Calcium, and Zinc as a Powerful and Universal Means for Killing Cancer Cells

  • Chemical Physics of Biological Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Magnetic isotope effect controls enzymatic DNA synthesis and strongly, by 2–3 times, suppresses catalytic activity of polymerases and increases even more strongly, by 20–50 times, the mortality of cancer cells. Catalyzing ions 25Mg2+, 43Ca2+, and 67Zn2+ carrying magnetic nuclei are shown to efficiently kill cancer cells. The advantage of these ions for practical medicine is that being injected in blood they are captured selectively and almost exclusively by cancer cells inducing their death. The healthy cells capture these ions much less efficiently (perhaps due to the lower penetrability of their membranes) and are not vulnerable to these ions in comparison with cancer cells. Of course, penetrability of cells is identical for magnetic and nonmagnetic ions, but only the former kill cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L Buchachenko and G. A. Nikiforov, Dokl. Akad. Nauk SSSR 228, 379 (1976).

    CAS  Google Scholar 

  2. A. L Buchachenko, Chem. Rev. 95, 2507 (1995).

    Article  CAS  Google Scholar 

  3. A. L Buchachenko, J. Phys. Chem. A 105, 9995 (2001)

    Article  CAS  Google Scholar 

  4. A. L. Buchachenko, J. Phys. Chem. B 117, 2231 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. A. L Buchachenko, Magnetic Isotope Effect in Chemistry and Biochemistry (Nova Science, New York, 2009).

    Google Scholar 

  6. A. L. Buchachenko and R. G. Lawler, Acc. Chem. Res. 50, 877 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. A. L. Buchachenko, D. A. Kuznetsov, and N. N. Breslavskaya, Chem. Rev. 112, 2042 (2012)

    Article  CAS  PubMed  Google Scholar 

  8. A. L. Buchachenko, D. A. Kuznetsov, and N. N. Breslavskaya, J. Phys. Chem. B 114, 2287 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. A. L. Buchachenko and D. A. Kuznetsov, J. Phys. Chem. Biophys. 4, 142 (2014).

    Google Scholar 

  10. A. L Buchachenko, A. P. Orlov, D. A. Kuznetsov, and N. N. Breslavskaya, Nucl. Acids Res. 41, 8300 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. A. L. Buchachenko, A. P. Orlov, D. A Kuznetsov, and N. N. Breslavskaya, Chem. Phys. Lett. 586, 138 (2013)

    Article  CAS  Google Scholar 

  12. M. A. Orlova, E. Y. Osipova, and S. A. Roumiantsev, Brit. J. Med. Med. Res. 2, 21 (2012).

    Article  Google Scholar 

  13. A. A. Bukhvostov, A. A. Shatalov, A. L. Buchachenko, and D. A. Kuznetsov, Pharm. Lett. 18 (2013).

    Google Scholar 

  14. A. A. Bukhvostov, J. K. Napolov, A. L. Buchachenko, and D. A. Kuznetsov, Brit. J. Pharmacol. Toxicol. 5, 35 (2014).

    CAS  Google Scholar 

  15. T. A. Steitz, J. Biol. Chem. 274, 1739 (1999).

    Article  Google Scholar 

  16. M. D. Bojin and T. A. Schlick, J. Phys. Chem. B 111, 11244 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. I. L. Alberts, Y. Wang, and T. Schlick, J. Am. Chem. Soc. 129, 11100 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. N. Amirshahi, R. Alyautdin., S. Sarkar, S. Rezayat, M. Orlova, I. Trushkov, A. Buchachenko, and D. Kuznetsov, Int. J. Nanosci. 7, 113 (2008).

    Article  CAS  Google Scholar 

  19. S. Rezayat, S. Boushehri, B. Salmanian, A. Omidvari, S. Tarighat, S. Esmaeli, S. Sarkar, N. Amirshahi, R. Alyautdin, M. Orlova, I. Trushkov, A. Buchachenko, and D. Kuznetsov, Eur. J. Med. Chem. 44, 1554 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. N. Amirshahi, S. Rezayat, S. Boushehri, B. Salmanian, A. Omidvari, S. Tarighat, S. Esmaeli, S. Sarkar, R. Alyautdin, M. Orlova, I. Trushkov, A. Buchachenko, and D. Kuznetsov, Arch. Med. Res. 39, 549 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. A. A. Bukhvostov, A. S. Dvornikov, K. V. Ermakov, and D. A. Kuznetsov, Arch. Cancer Res. 5, 158 (2017).

    Article  Google Scholar 

  22. A. A. Bukhvostov, A. S. Dvornikov, K.V. Ermakov, P. B. Kurapov, and D. A. Kuznetsov, Acta Med. 60, 93 (2017).

    Google Scholar 

  23. A. A. Bukhvostov, A. S. Dvornikov, K. V. Ermakov, P. B. Kurapov, and D. A. Kuznetsov, Int. J. Cancer Biol. Clin. Oncol. 1.1, 34 (2017).

    Google Scholar 

  24. A. L. Buchachenko, Bioelectromagnetics 37, 1 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. A. L. Buchachenko, Magneto-Biology and Medicine (Nova Science, New York, 2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Buchachenko.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, D.A., Buchachenko, A.L. Nuclear Magnetic Ions of Magnesium, Calcium, and Zinc as a Powerful and Universal Means for Killing Cancer Cells. Russ. J. Phys. Chem. B 12, 690–694 (2018). https://doi.org/10.1134/S1990793118040267

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118040267

Keywords

Navigation