Skip to main content
Log in

Effect of aqueous medium on the molecular mobility of polylactide

  • Dynamics of Transport Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The coefficient of diffusion of distilled and sea water in polylactide of two grades at 23°C was calculated. The diffusion coefficient of water was (0.63–0.85) × 10–10 cm2/s for both polylactide samples, which corresponds to hydrophobic polymers. The temperature dependence of the water diffusion coefficient at 23, 30, and 50°C was obtained. The activation energy of the diffusion of distilled water was determined to be 38 and 36 kJ/mol, respectively, for both polylactide samples. A differential scanning calorimetry (DSC) study showed that after exposure to distilled and sea water at 23°C for 120 days, the melting point decreased by 2–3°C, and the degree of crystallinity increased by 5–9% in the experiment with distilled water for both samples. In an electron paramagnetic resonance (EPR) study it was determined that after hydrolysis, the correlation time of radical rotation in amorphous regions slightly decreased for both samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. V. Tertyshnaya and L. S. Shibryaeva, Polym. Sci., Ser. B 55, 164 (2013).

    Article  CAS  Google Scholar 

  2. H. Kang, B. Aiao, R. Wang, et al., Polymer 54, 2450 (2013).

    Article  CAS  Google Scholar 

  3. K. M. Nampoothiri, N. R. Nair, and R. P. John, Bioresour. Technol. 101, 8493 (2010).

    Article  Google Scholar 

  4. D. Garlotta, J. Polym. Environ. 9, 63 (2011).

    Article  Google Scholar 

  5. Y. Young, S.-W. Lee, S.-J. Lee, and W.-H. Park, Mater. Lett. 60, 1331 (2006).

    Article  Google Scholar 

  6. M. Obarzanek-Fojt, Yv. Elbs-Glatz, E. Lizundia, et al., Nanomed.: Nanotechnol., Biol. Med. 10, 1041 (2014).

    Article  CAS  Google Scholar 

  7. R. Ortiz, S. Moreno-Flores, I. Quintana, et al., Mater. Sci. Eng. C 37, 241 (2014).

    Article  CAS  Google Scholar 

  8. S. P. Rowland, ACS Symp. Ser. 127 (1980).

  9. G. E. Johnson, ACS Symp. Ser. 127, 441 (1980).

    Article  Google Scholar 

  10. M. O. Gallyamov, Diffusion in Polymers. Visualisation of Solutions of Typical Diffusion Problems (Krasand, Moscow, 2014) [in Russian].

    Google Scholar 

  11. S. Li, H. Garreau, and M. Vert, J. Mater. Sci. Mater. Med. 1, 198 (1990).

    Article  CAS  Google Scholar 

  12. H. Pistner, R. Gutwald, R. Ordung, J. Reuther, and J. Muhling, Biomaterials 14, 671 (1993).

    Article  CAS  Google Scholar 

  13. S. Sosnowski, Polymer 42, 637 (2001).

    Article  CAS  Google Scholar 

  14. H. Tsuji and Y. Ikada, Polym. Degrad. Stab. 67, 179 (2000).

    Article  CAS  Google Scholar 

  15. D. Cam, S.-H. Hyon, and Y. Ikada, Biomaterials 16, 833 (1995).

    Article  CAS  Google Scholar 

  16. H. Tsuji and K. Suzuyoshi, Polym. Degrad. Stab. 75, 347 (2002).

    Article  CAS  Google Scholar 

  17. E. Olewnik-Kruszkowska, Polym. Degrad. Stab. 129, 87 (2016).

    Article  CAS  Google Scholar 

  18. A. L. Iordanskii, A. V. Krivandin, O. V. Startzev, P. P. Kamaev, and U. J. Hanggi, in Frontiers in Biomedical Polymer Applications, Ed. by R. M. Ottenbrite (Technol. Publ., Lancaster, 1999), Vol. 2, p.63.

    CAS  Google Scholar 

  19. L.-T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci. 33, 820 (2008).

    Article  CAS  Google Scholar 

  20. A. Gonzalez, M. Iriarte, P. J. Iriondo, and J. J. Iruin, Polymer 44, 7701 (2003).

    Article  CAS  Google Scholar 

  21. A. L. Buchachenko and A. M. Vasserman, Stable Radicals (Khimiya, Moscow, 1973) [in Russian].

    Google Scholar 

  22. P. G. Painter, M. M. Coleman, and J. L. Koenig, The Theory of Vibrational Spectroscopy and its Application to Polymeric Materials (Wiley, New York, 1986).

    Google Scholar 

  23. T. Okihara, K. Okumura, and A. Kawaguchi, J. Macromol. Sci., Phys. 42, 875 (2003).

    Article  Google Scholar 

  24. Yu. V. Tertyshnaya, S. G. Karpova, O. V. Shatalova, A. V. Krivandin, and L. S. Shibryaeva, Polym. Sci., Ser. A 58, 50 (2016).

    Article  CAS  Google Scholar 

  25. S. Li and S. McCarthy, Biomaterials 20, 35 (1999).

    Article  CAS  Google Scholar 

  26. G. H. Yew, A. M. Mohd Yusof, Z. A. Mohd Ishak, and U. S. Ishiaku, Polym. Degrad. Stab. 90, 488 (2005).

    Article  CAS  Google Scholar 

  27. A. L. Iordanskii, P. P. Kamaev, and G. E. Zaikov, J. Appl. Polym. Sci. 73, 981 (1999).

    Article  CAS  Google Scholar 

  28. A. E. Chalykh, Water Diffusion in Polymer Systems (Khimiya, Moscow, 1987) [in Russian].

    Google Scholar 

  29. F. Codari, S. Lazzari, M. Soos, et al., Polym. Degrad. Stab. 97, 2460 (2012).

    Article  CAS  Google Scholar 

  30. M. V. Podzorova, Yu. V. Tertyshnaya, and A. A. Popov, Russ. J. Phys. Chem. B 8, 726 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Tertyshnaya.

Additional information

Original Russian Text © Yu.V. Tertyshnaya, S.G. Karpova, A.A. Popov, 2017, published in Khimicheskaya Fizika, 2017, Vol. 36, No. 6, pp. 84–91.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tertyshnaya, Y.V., Karpova, S.G. & Popov, A.A. Effect of aqueous medium on the molecular mobility of polylactide. Russ. J. Phys. Chem. B 11, 531–537 (2017). https://doi.org/10.1134/S1990793117030241

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793117030241

Keywords

Navigation