Skip to main content
Log in

Simulation of thermal decomposition of a polymer at random scissions of C-C bonds

  • Chemical Physics of Polymer Materials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A mathematical formulation of the polymer thermal decomposition model at random scissions of C-C bonds in the backbone is presented. The model is based on ideas about a macrokinetic character of the observed process PolymerGaseous products, and the thermofluctuation nature of the bond scission. The suggested approach makes it possible to calculate the decomposition rate in a wide pressure range at any initial molecular weight distribution of the polymer. As an example, a comparison of the calculation results for temperature-time dependences of the conversion degree and decomposition rate with experimental data obtained in isothermal and non-isothermal regimes is performed for linear polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. D. Peterson, S. Vyazovkin, and C. A. Wight, Macromol. Chem. 202, 775 (2001).

    Article  CAS  Google Scholar 

  2. I. A. Koptelov and S. V. Karyazov, Plast. Massy, No. 7, 24 (2008).

  3. S. Madorskii, Thermal Degradation of Organic Polymers, Ed. by S. R. Rafikov (Wiley, New York, 1964; Mir, Moscow, 1967).

    Google Scholar 

  4. J. D. Peterson, S. Vyazovkin, and C. A. Wight, J. Phys. Chem. 103, 8087 (1999).

    Article  CAS  Google Scholar 

  5. A. A. Koptelov, Yu. M. Milekhin, and Yu. N. Baranets, Russ. J. Appl. Chem. 82, 2047 (2009).

    Article  CAS  Google Scholar 

  6. A. A. Koptelov and I. A. Koptelov, Polym. Sci., Ser. B 51, 313 (2009).

    Article  Google Scholar 

  7. V. N. Likhachev, T. Yu. Astakhova, and G. A. Vinogradov, Khim. Fiz. 3, 517 (2009).

    Google Scholar 

  8. O. Saito, J. Phys. Soc. Jpn. 13, 198 (1958).

    Article  CAS  Google Scholar 

  9. K. V. Popov and V. D. Knyazev, in Proceedings of the Eastern State Fall Technical Meeting Chemical and Physical Processes in Combustion, Virginia, United States, 2007 (Curran, Red Hook, 2008). http://faculty.cua.edu/knyazev/A-07-Popov-Knyazev.pdf

    Google Scholar 

  10. Yu. K. Godovskii, Heat Physics of Polymers (Khimiya, Moscow, 1987) [in Russian].

    Google Scholar 

  11. S. Vyazovkin and N. Sbirrazzuoli, Macromol. Rapid Commun. 27, 1515 (2006).

    Article  CAS  Google Scholar 

  12. R. W. J. Westerhout, J. Waanders, J. A. M. Kuipers, and W. P. M. van Swaaij, Ind. Eng. Chem. Res. 36, 1955 (1997).

    Article  CAS  Google Scholar 

  13. P. Gaca, M. Drzewiecka, W. Kaleta, H. Kozubek, and K. Nowinska, Pol. J. Environ. Stud. 17, 25 (2008).

    CAS  Google Scholar 

  14. V. J. Fernandes, A. S. Araujo, and G. J. T. Fernandes, J. Therm. Anal. 49, 255 (1997).

    Article  CAS  Google Scholar 

  15. L. Sojak, R. Kubinec, H. Jurdakova, and M. Bajus, Pet. Coal. 48, 1 (2006).

    CAS  Google Scholar 

  16. T. A. Iida, K. Honda, and H. Nozaki, Bull. Chem. Soc. Jpn. 46, 1480 (1973).

    Article  CAS  Google Scholar 

  17. Z. Gao, I. Amasaki, T. Kaneko, and M. Nakada, Polym. Degrad. Stab. 81, 125 (2003).

    Article  CAS  Google Scholar 

  18. V. A. Kireev, Course on Physical Chemistry (Khimiya, Moscow, 1975) [in Russian].

    Google Scholar 

  19. Physical Values: Guide, Eds. by I. S. Grigor’ev and E. Z. Melikhov (Energoatomizdat, Moscow, 1991), pp. 254–329 [in Russian].

    Google Scholar 

  20. A. A. Koptelov, Yu. M. Milekhin, and O. F. Shlenskii, Polym. Sci., Ser. A 47, 948 (2005).

    Google Scholar 

  21. B. Dickens, J. Polym. Sci.: Polym. Chem. Ed. 20, 1065 (1982).

    Article  CAS  Google Scholar 

  22. O. Saito, H. Y. Kang, and M. Dole, J. Chem. Phys. 46, 3607 (1967).

    Article  CAS  Google Scholar 

  23. J. Rychly and L. Richla, J. Therm. Anal. 35, 77 (1989).

    Article  CAS  Google Scholar 

  24. D. A. Costa, J. G. A. P. Filho, M. Embirucu, M. J. B. Souza, A. S. Araujo, H. Oliveira, and T. F. Gomes, in Proceedings of the 2nd Mercosur Congress on Chemical Engineering and 4th Mercosur Congress on Process Systems Engineering, Rio de Janeiro, Brazil, 2005. www.enpromer2005.eq.ufrj.br/

  25. I. Kayacan and O. M. Dogan, Energy Sources, Part A 30, 385 (2008).

    Article  CAS  Google Scholar 

  26. G. J. T. Fernandes, V. J. Fernandes, and A. S. Araujo, Catal. Today 75, 233 (2002).

    Article  CAS  Google Scholar 

  27. A. A. Koptelov and S. V. Karyazov, Dokl. Phys. Chem. 389, 101 (2003).

    Article  CAS  Google Scholar 

  28. A. A. Koptelov, Yu. M. Milekhin, and S. A. Gusev, Dokl. Phys. Chem. 416, 265 (2007).

    Article  CAS  Google Scholar 

  29. A. A. Koptelov, Yu. M. Milekhin, D. N. Sadovnichii, and N. I. Shishov, High Temp. 46, 261 (2008).

    Article  CAS  Google Scholar 

  30. S. R. Urzendowski and A. H. Guenther, J. Therm. Anal. 3, 379 (1971).

    Article  CAS  Google Scholar 

  31. A. K. Burnham and R. L. Braun, Energy Fuels 13, 1 (1999).

    Article  CAS  Google Scholar 

  32. P. M. D. Benoit, R. G. Ferrillo, and A. H. Granzov, J. Therm. Anal. 30, 869 (1985).

    Article  CAS  Google Scholar 

  33. H. A. Schneider, J. Therm. Anal. 40, 677 (1993).

    Article  CAS  Google Scholar 

  34. R. Simha and L. A. Wall, J. Phys. Chem. 56, 707 (1952).

    Article  CAS  Google Scholar 

  35. T. Ozava, J. Therm. Anal. 2, 301 (1970).

    Article  Google Scholar 

  36. S. Vyazovkin, Int. J. Chem. Kinet. 28, 95 (1996).

    Article  CAS  Google Scholar 

  37. S. Vyazovkin, J. Comput. Chem 18, 393 (1997).

    Article  CAS  Google Scholar 

  38. S. Vyazovkin and D. Dollimore, J. Chem. Inf. Comp. Sci. 36, 42 (1996).

    CAS  Google Scholar 

  39. S. Vyazovkin and C. A. Wight, J. Phys. Chem. A 101, 8279 (1997).

    Article  CAS  Google Scholar 

  40. S. Vyazovkin and C. A. Wight, Chem. Mater. 11, 3386 (1999).

    Article  CAS  Google Scholar 

  41. T. Ozava, Bull. Chem. Soc. Jpn. 38, 1881 (1965).

    Article  Google Scholar 

  42. J. H. Flinn and L. A. Wall, J. Res. Natl. Bur. Stand., Sect. A 70, 487 (1966).

    Google Scholar 

  43. S. Vyazovkin, J. Comput. Chem. 22(2), 178 (2001).

    Article  CAS  Google Scholar 

  44. H. Friedman, J. Polym. Sci., Ser. C 6, 183 (1964).

    Article  Google Scholar 

  45. J. M. Criado, P. E. Sanchez-Jimenez, and L. A. Perez-Maqueda, J. Therm. Anal. Calorim. 92, 199 (2008).

    Article  CAS  Google Scholar 

  46. A. K. Galvey, Thermochim. Acta 397, 249 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Koptelov.

Additional information

Original Russian Text © A.A. Koptelov, Yu.M. Milekhin, Yu.N. Baranets, 2012, published in Khimicheskaya Fizika, 2012, Vol. 31, No. 9, pp. 68–76.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koptelov, A.A., Milekhin, Y.M. & Baranets, Y.N. Simulation of thermal decomposition of a polymer at random scissions of C-C bonds. Russ. J. Phys. Chem. B 6, 626–633 (2012). https://doi.org/10.1134/S1990793112050168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793112050168

Keywords

Navigation