Skip to main content
Log in

Simulation of seismo-ionospheric effects initiated by internal gravity waves

  • Chemical Physics of Atmosphere and Ionosphere
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Experimental studies have repeatedly demonstrated that, a few days before a strong earthquake, local increases (sometimes decreases) in the electron density in the ionosphere over the epicentral area emerge. Simulations with the help of the GSM TIP (global self-consistent model “Thermosphere-Ionosphere-Protonosphere”) and UAM (Upper Atmosphere Model) models show that account of local disturbances of the zonal electric fields makes it possible to reproduce the morphology of ionospheric disturbances. However, these model experiments do not explain the formation of such ionospheric features over the epicentral area of the impending earthquake. In this paper, we propose a mechanism for the formation of ionospheric disturbances before strong earthquakes due to propagation and dissipation of small-scale internal gravity waves (IGWs) in the upper atmosphere. Using the GSM TIP model, we calculated the ionospheric parameters with account of small-scale IGWs in the near-epicenter area. It is shown that disturbances in the TEC (total electron content) predicted by calculations are in satisfactory agreement with observations from GPS (Global Position System) satellites before the strong mid-latitude earthquake in Greece on January 8, 2006.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Liperovskii, O. A. Pokhotelov, and S. L. Shalimov, Ionospheric Precursors of Earthquakes (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  2. S. A. Pulinets and K. Boyarchuk, Ionospheric Precursors of Earthquakes (Springer, Berlin, 2004).

    Google Scholar 

  3. M. Hayakawa, Sensors 7, 1141 (2007).

    Article  Google Scholar 

  4. L. P. Korsunova and V. V. Khegai, Geomagn. Aeron. 45, 706 (2005) [Geomagn. Aeron. 45, 665 (2005)].

    Google Scholar 

  5. J. Y. Liu, Y. I. Chen, Y. J. Chuo, and C. S. Chen, J. Geophys. Res. 111(A05304) (2006).

  6. J. Y. Liu, Y. J. Chuo, S. J. Shan, et al., Ann. Geophys. 22, 1585 (2004).

    Article  Google Scholar 

  7. S. Saroso, J. Y. Liu, K. Hattori, and C. H. Chen, Terr. Atmos. Oceanic 19, 481 (2008).

    Article  Google Scholar 

  8. I. E. Zakharenkova, I. I. Shagimuratov, A. Krankowski, and A. F. Lagovsky, Studia Geophys. Geodes. 51, 267 (2007).

    Article  Google Scholar 

  9. S. A. Pulinets, A. D. Legen’ka, T. V. Gaivoronskaya, and V. Kh. Depuev, J. Atmos. Sol.-Terr. Phys. 65, 1337 (2003).

    Article  CAS  Google Scholar 

  10. I. E. Zakharenkova, Candidate’s Dissertation in Mathematics and Physics (RGU Kanta, Kaliningrad, 2007).

    Google Scholar 

  11. I. E. Zakharenkova, I. I. Shagimuratov, and A. Krankowski, Acta Geophys. 55, 524 (2007).

    Article  Google Scholar 

  12. M. B. Gokhberg and S. L. Shalimov, Influence of Earthquakes and Explosions on the Ionosphere (Inst. of Phys. of the Earth RAS, Moscow, 2004).

    Google Scholar 

  13. V. A. Liperovskii, O. A. Pokhotelov, K. V. Meister, and E. V. Liperovskaya, Geomagn. Aeron. 48, 831 (2008) [Geomagn. Aeron. 48, 795 (2008)].

    CAS  Google Scholar 

  14. N. N. Pertsev and S. L. Shalimov, Geomagn. Aeron. 36(2), 111 (1996) [Geomagn. Aeron. 36, 223 (1996)].

    CAS  Google Scholar 

  15. E. A. Mareev, D. I. Iudin, and O. A. Molchanov, Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling (Terra Sci., Tokyo, 2002), p. 335.

    Google Scholar 

  16. O. A. Molchanov, Phys. Chem. Earth 29, 559 (2004).

    Google Scholar 

  17. V. M. Chmyrev, N. V. Isaev, S. V. Bilichenko, and G. A. Stanev, Phys. Earth Planet. Int. 57, 110 (1989).

    Article  Google Scholar 

  18. V. M. Sorokin and V. M. Chmyrev, Geomagn. Aeron. 42, 821 (2002) [Geomagn. Aeron. 42, 784 (2002)].

    Google Scholar 

  19. V. V. Grimalsky, M. Hayakawa, V. N. Ivchenko, Y. G. Rapoport, and V. I. Zadorozhnii, J. Atmos. Sol.-Terr. Phys. 65, 391 (2003).

    Article  Google Scholar 

  20. V. V. Denisenko, M. Y. Boudjada, M. Horn, et al., Nat. Haz. Earth Syst. Sci. 8, 1009 (2008).

    Article  Google Scholar 

  21. M. Hayakawa and Y. Fujinawa, Electromagnetic Phenomena Related to Earthquake Prediction (Terra Sci., Tokyo, 1994).

    Google Scholar 

  22. A. A. Namgaladze, in Proc. Intern. Scientific Technical Conference on Science and Education 2007 (Murm. Gos. Tech. Univ., Murmansk, 2007), p. 358.

    Google Scholar 

  23. S. A. Pulinets, A. D. Legen’ka, T. V. Gaivoronskaya, and V. Kh. Depuev, J. Atmos. Sol.-Terr. Phys. 65, 1337 (2003).

    Article  CAS  Google Scholar 

  24. A. Kh. Depueva and Yu. Ya. Ruzhin, Adv. Space Res. 15(12), 151 (1995).

    Article  Google Scholar 

  25. S. A. Pulinets and A. D. Legen’ka, Geomagn. Aeron. 42, 239 (2002) [Geomagn. Aeron. 42, 227 (2002)].

    Google Scholar 

  26. I. E. Zakharenkova, A. Krankowski, and I. I. Shagimuratov, Nat. Haz. Earth System Sci. 6, 817 (2006).

    Article  Google Scholar 

  27. A. A. Namgaladze, M. V. Klimenko, V. V. Klimenko, and I. E. Zakharenkova, Geomagn. Aeron. 49, 267 (2009) [Geomagn. Aeron. 49, 252 (2009)].

    Article  Google Scholar 

  28. T. Yokoyama, T. Horinouchi, M. Yamamoto, and S. Fukao, J. Geophys. Res. 109(A12307) (2004).

  29. I. V. Karpov and F. S. Bessarab, Geomagn. Aeron. 48, 217 (2008) [Geomagn. Aeron. 48, 209 (2008)].

    Article  CAS  Google Scholar 

  30. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Pure Appl. Geoph. 127, 219 (1988).

    Article  CAS  Google Scholar 

  31. A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Geomagn. Aeron. 30, 612 (1990).

    Google Scholar 

  32. V. V. Klimenko, M. V. Klimenko, and V. V. Bryukhanov, Mat. Model. 18(3), 77 (2006).

    Google Scholar 

  33. M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, Geomagn. Aeron. 46, 485 (2006) [Geomagn. Aeron. 46, 457 (2006)].

    Article  Google Scholar 

  34. B. E. Brunelli and A. A. Namgaladze, Physics of the Ionosphere (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  35. G. Occhipinti, E. A. Kherani, and P. Lognonné, Geophys. J. Int. 173, 753 (2008).

    Article  CAS  Google Scholar 

  36. G. Occhipinti, P. Lognonné, E. A. Kherani, and H. Hébert, Geophys. Rev. Lett. 33, L20104 (2006).

    Article  Google Scholar 

  37. E. A. Kherani, P. Lognonné, N. Kamath, F. Crespon, and R. Garcia, Geophys. J. Int. 176, 1 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Klimenko.

Additional information

Original Russian Text © M.V. Klimenko, V.V. Klimenko, I.V. Karpov, I.E. Zakharenkova, 2011, published in Khimicheskaya Fizika, 2011, Vol. 30, No. 5, pp. 41–49.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimenko, M.V., Klimenko, V.V., Karpov, I.V. et al. Simulation of seismo-ionospheric effects initiated by internal gravity waves. Russ. J. Phys. Chem. B 5, 393–401 (2011). https://doi.org/10.1134/S1990793111030109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793111030109

Keywords

Navigation