Skip to main content
Log in

A Possible Mechanism of the Antioxidant Action of Dinitrosyl Iron Complexes

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract—

The antioxidant effect of dinitrosyl iron complexes (DNICs) was studied in various model systems. DNICs with glutathione ligand (DNIC-GS) effectively inhibited Cu2+-induced peroxidation of low density lipoproteins (LDL). The antioxidant effect of DNICs with phosphate ligands and free reduced glutathione (GSH) was less pronounced. In addition, DNIC-GS suppressed reactive oxygen species (ROS) formation during co-oxidation of lecithin liposomes and glucose. Free radical oxidation in this system was induced with a lipophilic azo initiator (AIBN) and evaluated by luminol-dependent chemiluminescence. NO sharply stimulated chemiluminescence during co-oxidation of glucose and liposomes, thus suggesting the formation of potent oxidants under these conditions. DNIC-GS scavenged the superoxide radical anion generated in the xanthine-xanthine oxidase system. Superoxide production was assessed by lucigenin-dependent chemiluminescence and electron paramagnetic resonance (EPR) spectroscopy. Chemiluminescence revealed the dose-dependent mode of the antiradical effect DNIC-GS; moreover, these complexes were more efficient than GSH. EPR spectra of adducts of the DEPMPO spin trap with free radicals suggest that the interaction of DNIC-GS and superoxide does not result in the formation of the thiyl radical of glutathione. Here we propose a mechanism of the antioxidant action of DNIC-GS, suggesting that unstable intermediate complexes are formed upon their interaction with superoxide or lipid radicals. After subsequent intramolecular rearrangement, these intermediates decompose without the free radical formation as the by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Rubbo, H. and O’Donnell, V., Toxicology, 2005, vol. 208, pp. 305–317. https://doi.org/10.1016/j.tox.2004.11.019

    Article  CAS  PubMed  Google Scholar 

  2. Pryor, W.A., Houk, K.N., Foote, C.S., Fukuto, J.M., Ignarro, L.J., Squadrito, G.L., and Davies, K.J.A., Am. J. Physiol. Regul. Integr. Comp. Physiol., 2006, vol. 291, pp. R491–R511. https://doi.org/10.1152/ajpregu.00614.2005

    Article  CAS  PubMed  Google Scholar 

  3. van Faassen, E. and Vanin, A.F., (Eds.) Radicals For Life: The Various Forms of Nitric Oxide, Amsterdam: Elsevier, 2007.

    Google Scholar 

  4. Li, Q., Li, C., Mahtani, H.K., Du, J., Patel, A.R., and Lancaster, Jr., J.R., J. Biol. Chem., 2014, vol. 289, no. 29, pp. 19917–19927. https://doi.org/10.1074/jbc.M114.569764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vanin, A.F., Nitric Oxide, 2016, vol. 54, pp. 15-29. https://doi.org/10.1016/j.niox.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  6. Radi, R., Proc. Natl. Acad. Sci. USA, 2018, vol. 115, no. 23, pp. 5839–5848. https://doi.org/10.1073/pnas.1804932115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shumaev, K.B., Gubkin, A.A., Serezhenkov, V.A., Lobysheva, I.I., Kosmachevskaya, O.V., Ruuge, E.K., Lankin, V.Z., Topunov, A.F., and Vanin, A.F., Nitric Oxide, 2008, vol. 18, no. 1, pp. 37–46. https://doi.org/10.1016/j.niox.2007.09.085

    Article  CAS  PubMed  Google Scholar 

  8. Shumaev, K.B., Kosmachevskaya, O.V., Timoshin, A.A., Vanin, A.F., and Topunov, A.F., Methods Enzymol., 2008, vol. 436, pp. 445–461.

    Article  CAS  Google Scholar 

  9. Shumaev, K.B., Ruuge, E.K., Lankin, V.Z., Vanin, A.F., Gomboeva, S.A., and Belenkov, Y.N., Dokl. Biochem. Biophys., 2001, vol. 379, no. 5, pp. 273–275. https://doi.org/10.1023/a:1011654803227

    Article  CAS  PubMed  Google Scholar 

  10. Gudkov, L.L., Shumaev, K.B., Kalenikova, E.I., Gubkina, S.A., Vanin, A.F., and Ruuge, E.K., Biophysics, 2007, vol. 52, no. 3, pp. 315–321.

    Article  Google Scholar 

  11. Shumaev, K.B., Dudylina, A.L., Ivanova, M.V., Pugachenko, I.S., and Ruuge, E.K., BioFactors, 2018, vol. 44, no. 3, pp. 237–244. https://doi.org/10.1002/biof.1418

    Article  CAS  PubMed  Google Scholar 

  12. Shumaev, K.B., Gorudko, I.V., Kosmachevskaya, O.V., Grigorieva, D.V., Panasenko, O.M., Vanin, A.F., Topunov, A.F., Terekhova, M.S., Sokolov, A.V., Cherenkevich, S.N., and Ruuge, E.K., Oxidative Medicine Cellular Longevity, 2019, vol. 2019, Article ID 2798154, 12 pages. https://doi.org/10.1155/2019/2798154

  13. Pisarenko, O., Studneva, I., Timoshin, A., and Veselova, O., Pflugers Arch., 2019, vol. 471, no. 4, pp. 583–593. https://doi.org/10.1007/s00424-018-02251-2

    Article  CAS  PubMed  Google Scholar 

  14. Tertov, V.V., Kaplun, V.V., Dvoryantsev, S.N., Orekhov, A.N., Biochem. Biophys. Res. Commun., 1995, vol. 214, pp. 608–613. https://doi.org/10.1006/bbrc.1995.2329

    Article  CAS  PubMed  Google Scholar 

  15. Lankin, V., Konovalova, G., Tikhaze, A., Shumaev, K., Kumskova, E., and Viigimaa, M., Mol. Cell Biochem., 2014, vol. 395, nos.1–2, pp. 241–252. https://doi.org/10.1007/s11010-014-2131-2

    Article  CAS  PubMed  Google Scholar 

  16. Matveeva, N.S., Lyubitsky, O.B., Osipov, A.N., and Vladimirov, Yu.A., Biophysics, 2007, vol. 52, no. 6, pp. 632–639. https://doi.org/10.1134/S0006350907060164

    Article  Google Scholar 

  17. Lankin, V.Z., Shadyro, O.I., Shumaev, K.B., Tikhaze, A.K., and Sladkova, A.A., J. Antioxidant Activity, 2019, vol. 1, no. 4, pp. 33–45. https://doi.org/10.14302/issn.2471-2140.jaa-19-2997

    Article  Google Scholar 

  18. Hogg, N., Kalyanaraman, B., Joseph, J., Struck, A., and Parthasarathy, S., FEBS Lett., 1993, vol. 334, no. 2, pp. 170–174. https://doi.org/10.1016/0014-5793(93)81706-6

    Article  CAS  PubMed  Google Scholar 

  19. Lankin, V.Z. and Tikhaze, A.K., Curr. Aging Sci., 2017, vol. 10, no. 1, pp. 18–25. https://doi.org/10.2174/1874609809666160926142640

    Article  CAS  PubMed  Google Scholar 

  20. Zou, M.-H., Cohen, R., and Ullrich, V., Endothelium, 2004, vol. 11, no. 2, pp. 89–97. https://doi.org/10.1080/10623320490482619

    Article  CAS  PubMed  Google Scholar 

  21. Damasceno, F.C., Condeles, A.L., Lopes, A.K.B., Facci, R.R., Linares, E., Truzzi, D.R., Augusto, O., and Toledo, Jr., J.C., J. Biol. Chem., 2018, vol. 293, pp. 8530–8542. https://doi.org/10.1074/jbc.RA117.000883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dikalov, S., Jiang, J., and Mason, R.P., Free Radical Res., 2005, vol. 39, no. 8, pp. 825–836. https://doi.org/10.1080/10715760500155688

    Article  CAS  Google Scholar 

  23. Karoui, H., Hogg, N., Fréjaville, C., Tordo, P., and Kalyanaraman, B., J. Biol. Chem., 1996, vol. 271, no. 11, pp. 6000–6009. https://doi.org/10.1074/jbc.271.11.6000

    Article  CAS  PubMed  Google Scholar 

  24. Mondal, B., Borah, D., Mazumdar, R., and Biplab, M., Inorg. Chem., 2019, vol. 58, no. 2, pp. 1234–1240. https://doi.org/10.1021/acs.inorgchem.9b02359

    Article  CAS  PubMed  Google Scholar 

  25. Kalita, A., Kumar, P., and Mondal, B., Inorg. Chem., 2013, vol. 52, no. 19, pp. 10897–10903. https://doi.org/10.1021/ic400890f

    Article  CAS  PubMed  Google Scholar 

  26. Tran, N.G., Kalyvas, H., Skodje, K.M., Hayashi, T., Moënne-Loccoz, P., Callan, P.E., Shearer, J., Kirschenbaum, L.J., and Kim, E., J. Am. Chem. Soc., 2011, vol. 133, no. 5, pp. 1184–1187. https://doi.org/10.1021/ja108313u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.A. Grechnikova, I.S. Pugachenko and Dr. G.G. Konovalova for their help in carrying out some experiments.

Funding

This work was partially supported by the Russian Foundation for Basic Research (project no. 19-015-00444).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Shumaev.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

The study was carried out in accordance with the Declaration of Helsinki of the World Medical Association and approved by the Ethics Committee of the National Medical Research Center for Cardiology (meeting protocol no. 177 of September 7, 2012 and no. 221 of November 28, 2016). Donors of the blood used to obtain LDL gave their voluntary informed consent to participate in the study. In other experiments, biomaterials obtained from humans and animals were not used.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Medvedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shumaev, K.B., Kosmachevskaya, O.V., Grachev, D.I. et al. A Possible Mechanism of the Antioxidant Action of Dinitrosyl Iron Complexes. Biochem. Moscow Suppl. Ser. B 15, 313–319 (2021). https://doi.org/10.1134/S1990750821040090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750821040090

Keywords:

Navigation