Skip to main content
Log in

Detection of DNA molecules in a lipid nanotube channel in the low ion strength conditions

  • Articles
  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Investigation of the transport phenomena in the nanoscopic channels/pores with the diameter smaller than 100 nm is of utmost importance for various biological, medical, and technical applications. Presently, the main line of development of nanofluidics is creation of biosensors capable of detecting single molecules and manipulating them. Detection of molecules is based on the measurement of electric current through a channel of appropriate size: when the molecule enters the channel, which diameter is comparable with the molecule size, the ion current reduces. In order to improve transport properties of such channels, their walls are often coated with a lipid bilayer, which behaves as two-dimensional liquid and thus is capable of supporting transport phenomena. In the present work, we utilized this property of lipid membranes for the development of a method for detecting and controlling transport of single-stranded DNA through channels formed by membrane cylinders with the luminal radii of 5–7 nm. We have demonstrated that in the conditions of small ion strength, the appearance of a DNA molecule inside such channel is accompanied by an increase of its ion conductivity and can be controlled by the polarity of the applied voltage. The amplitude of the ion current increase allows evaluating the amount of DNA molecules inside the channels. It was also demonstrated that upon adsorption of DNA molecules on the lipid bilayer surface, the membrane cylinder behaves as a voltage-sensitive selective ion channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wanunu M. 2012. Nanopores: A journey towards DNA sequencing. Physics Life Rev. 9 (2), 125–158.

    Article  Google Scholar 

  2. Kowalczyk S.W., Blosser T.R., Dekker C. 2011. Biomimetic nanopores: Learning from and about nature. Trends Biotechnol. 29 (12), 607–614.

    Article  CAS  PubMed  Google Scholar 

  3. Yusko E.C., Johnson J.M., Majd S., Prangkio P., Rollings R.C., Li J., Mayer M. 2011. Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat. Nanotechnol. 6 (4), 253–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Quick J., Loman N.J., Duraffour S., Simpson J.T., Severi E., Cowley L., Oué draogo N. 2016. Real-time, portable genome sequencing for Ebola surveillance. Nature. 530 (7589), 228–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cherf G.M., Lieberman K.R., Rashid H., Lam C.E., Karplus K., Akeson M. 2012. Automated forward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nat. Biotechnol. 30 (4), 344–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nivala J., Marks D.B., Akeson M. 2013. Unfoldasemediated protein translocation through an a-hemolysin nanopore. Nat. Biotechnol. 31 (3), 247–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garaj S., Hubbard W., Reina A., Kong J., Branton D., Golovchenko J.A. 2010. Graphene as a subnanometre trans-electrode membrane. Nature. 467 (7312), 190–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Branton D., Deamer D.W., Marziali A., Bayley H., Benner S.A., Butler T., Jovanovich S.B. 2008. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26 (10), 1146–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Venkatesan B.M., Bashir R. 2011. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol., 6 (10), 615–624.

    Article  CAS  PubMed  Google Scholar 

  10. Storm A.J., Chen J.H., Ling X.S., Zandbergen H.W., Dekker C. 2003. Fabrication of solid-state nanopores with single-nanometre precision. Nat. Materials. 2 (8), 537–540.

    Article  CAS  PubMed  Google Scholar 

  11. Derrington I.M., Butler T.Z., Collins M.D., Manrao E., Pavlenok M., Niederweis M., Gundlach J.H. 2010. Nanopore DNA sequencing with MspA. Proc. Natl. Acad. Sci. 107 (37), 16060–16065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Manrao E.A., Derrington I.M., Pavlenok M., Niederweis M., Gundlach J.H. 2011. Nucleotide discrimination with DNA immobilized in the MspA nanopore. PloS one, 6 (10), e25723.

    Article  Google Scholar 

  13. Li J., Stein D., McMullan C., Branton D., Aziz M.J., Golovchenko J.A. 2001. Ion-beam sculpting at nanometre length scales. Nature. 412 (6843), 166–169.

    Article  CAS  PubMed  Google Scholar 

  14. Dekker C. 2007. Solid-state nanopores. Nat. Nanotechnol. 2 (4), 209–215.

    Article  CAS  PubMed  Google Scholar 

  15. Liu L., Yang C., Zhao K., Li J., Wu H.C. 2013. Ultrashort single-walled carbon nanotubes in a lipid bilayer as a new nanopore sensor. Nat. Commun. 4, 2989.

    PubMed  PubMed Central  Google Scholar 

  16. Liu S., Lu B., Zhao Q., Li J., Gao T., Chen Y., You L. 2013. Boron nitride nanopores: Highly sensitive DNA single-molecule detectors. Adv. Materials. 25 (33), 4549–4554.

    Article  CAS  Google Scholar 

  17. Song L., Ci L., Lu H., Sorokin P.B., Jin C., Ni J., Ajayan P.M. 2010. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10 (8), 3209–3215.

    Article  CAS  PubMed  Google Scholar 

  18. Sugihara K., Delai M., Mahnna R., Kusch J., Poulikakos D., Vörö s J., Ferrari A. 2013. Label-free detection of cell-contractile activity with lipid nanotubes. Integrative Biol. 5 (2), 423–430.

    Article  CAS  Google Scholar 

  19. Frolov V.A., Lizunov V.A., Dunina-Barkovskaya A.Y., Samsonov A.V., Zimmerberg J. 2003. Shape bistability of a membrane neck: A toggle switch to control vesicle content release. Proc. Natl. Acad. Sci. USA. 100 (15), 8698–8703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bashkirov P.V. 2007. Membrane nanotubes pulled from bilayer lipid membrane (BLM) as a model for studies of mechanical properties of strongly bent bilayers. Biol. Membrany (Rus.). 24, 183–192.

    CAS  Google Scholar 

  21. Bashkirov P.V., Akimov S.A., Evseev A.I., Schmid S.L., Zimmerberg J., Frolov V.A. 2008. GTPase cycle of dynamin is coupled to membrane squeeze and release, leading to spontaneous fission. Cell. 135 (7), 1276–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Borisenko G.G., Zaitseva M.A., Chuvilin A.N., Pozmogova G.E. 2009. DNA modification of live cell surface. Nucl. Acids Res. 37 (4), e28.

    Article  Google Scholar 

  23. Shnyrova A.V., Bashkirov P.V., Akimov S.A., Pucadyil T.J., Zimmerberg J., Schmid S. L., Frolov V.A. 2013. Geometric catalysis of membrane fission driven by flexible dynamin rings. Science. 339 (6126), 1433–1436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mueller P., Rudin D.O., Tien H.T., Wescott W.C. 1963. Methods for the formation of single bimolecular lipid membranes in aqueous solution. J. Phys. Chem. 67 (2), 534–535.

    Article  CAS  Google Scholar 

  25. Sokolov V.S., Gavrilchik A.N., Kulagina A.O., Meshkov I.N., Pohl P., Gorbunova Y.G. 2016. Voltage-sensitive styryl dyes as singlet oxygen targets on the surface of bilayer lipid membrane. J. Photochem. Photobiol. B: Biol. 161, 162–169.

    Article  CAS  Google Scholar 

  26. Sokolov V.S., Pohl P. 2009. Membrane transport of singlet oxygen monitored by dipole potential measurements. Biophys. J. 96 (1), 77–85.

    Article  CAS  PubMed  Google Scholar 

  27. Sokolov V.S., Kuz’min V.G. 1980. Measurement of differences in the surface potentials of bilayer membranes according to the second harmonic of a capacitance current. Biofizika (Rus.). 25 (1), 170–172.

    CAS  Google Scholar 

  28. Ermakov Y.A., Sokolov V.S. 2003. Boundary potentials of bilayer lipid membranes: Methods and interpretations. Membr. Sci. Technol. 7, 109–141.

    Article  CAS  Google Scholar 

  29. Sokolov V., Mirsky V. 2004. Electrostatic potentials of bilayer lipid membranes: Basic principles and analytical applications. In: Ultrathin Electrochem. Chemo-and Biosensors. Springer Berlin Heidelberg, pp. 255–291.

    Chapter  Google Scholar 

  30. Heinrich V., Bozic B., Svetina S., Zeks B. 1999. Vesicle deformation by an axial load: From elongated shapes to tethered vesicles. Biophys. J. 76 (4), 2056–2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Powers T.R., Huber G., Goldstein R.E. 2002. Fluidmembrane tethers: Minimal surfaces and elastic boundary layers. Phys. Rev. E. 65 (4), 041901.

    Article  Google Scholar 

  32. Helfrich W. 1973. Elastic properties of lipid bilayers: Theory and possible experiments. Zeitschrift für Naturforschung C. 28 (11–12), 693–703.

    CAS  Google Scholar 

  33. Needham D., Haydon D.A. 1983. Tensions and free energies of formation of “solventless” lipid bilayers. Measurement of high contact angles. Biophys. J. 41, 251–257.

    CAS  PubMed  Google Scholar 

  34. Bashkirov P.V., Chekashkina K.V., Akimov S.A., Kuzmin P.I., Frolov V.A. 2011. Variation of lipid membrane composition caused by strong bending. Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol. 5 (2), 205–211.

    Article  Google Scholar 

  35. Arriaga L.R, López-Montero I., Monroy F., Orts-Gil G., Farago B., Hellweg T. 2009. Stiffening effect of cholesterol on disordered lipid phases: A combined neutron spin echo + dynamic light scattering analysis of the bending elasticity of large unilamellar vesicles. Biophys. J. 96, 3629–3637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Orädd G., Lindblom G., Westerman P.W. 2002. Lateral diffusion of cholesterol and dimyristoylphosphatidylcholine in a lipid bilayer measured by pulsed field gradient NMR spectroscopy. Biophys. J. 83 (5), 2702–2704.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lindblom G., Orädd G., Filippov A. 2006. Lipid lateral diffusion in bilayers with phosphatidylcholine, sphingomyelin and cholesterol: An NMR study of dynamics and lateral phase separation. Chem. Phys. Lipids. 141 (1), 179–184.

    Article  CAS  PubMed  Google Scholar 

  38. Rawicz W., Olbrich K.C., McIntosh T., Needham D., Evans E. 2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79 (1), 328–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Evseev A.I., Baskirov P.V. 2008. Fission/Division of membrane tube induced by osmotic pressure. Biol. Membrany (Rus.). 25 (4), 308–313.

    CAS  Google Scholar 

  40. Hooge F.N. 1990. The relation between 1/f noise and number of electrons Physica B. 162, 344–352.

  41. Smeets R.M.M., Keyser U.F., Dekker N.H., Dekker C. 2007. Noise in solid state nanopores. Proc. Nat. Acad. Sci. USA. 105 (2), 417–421.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Bashkirov.

Additional information

Original Russian Text © K.V. Chekashkina, T.R. Galimzyanov, P.I. Kuzmin, S.A. Akimov, S.A. Romanov, G.E. Pozmogova, D.V. Klinov, P.V. Bashkirov, 2017, published in Biologicheskie Membrany, 2017, Vol. 34, No. 4, pp. 261–269.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chekashkina, K.V., Galimzyanov, T.R., Kuzmin, P.I. et al. Detection of DNA molecules in a lipid nanotube channel in the low ion strength conditions. Biochem. Moscow Suppl. Ser. A 11, 217–224 (2017). https://doi.org/10.1134/S1990747817030047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747817030047

Keywords

Navigation