Skip to main content
Log in

Features of inhibition of glycerol-3-phosphate oxidase activity of liver mitochondria by palmitic acid in the presence of ATP and tert-butylhydroperoxide

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The effect of palmitic acid on glycerol-3-phosphate oxidation, i.e., on the glycerol-3-phosphate oxidase (GP oxidase) activity of liver mitochondria was investigated in the presence and absence of ATP, as well as under conditions of tert-butylhydroperoxide (TBH)-induced oxidative stress. It was found that palmitic and lauric acids inhibit GP oxidase activity of deenergized liver mitochondria formally in the competitive manner. In this case lauric acid, which is less hydrophobic than palmitic acid, inhibits GP oxidase activity of mitochondria significantly weaker. It is noted that the competitive inhibition of mitochondrial GP oxidase activity by these saturated fatty acids may be related to their ability, as amphiphilic compounds, to increase the negative charge density on the outer surface of the inner mitochondrial membrane. It is shown that ATP at a concentration of 2 mM eliminates the ability of palmitic acid to inhibit GP oxidase activity of mitochondria. This effect of ATP is not observed in the presence of F O F 1-ATP synthase inhibitor oligomycin. Apparently, in the case of vector transport of H+ from the matrix to the intermembrane space of mitochondria induced by ATP hydrolysis there is occurs protonation of palmitic acid anions on the outer surface of the inner membrane and subsequent movement of its neutral molecules to the inner monolayer of the inner membrane. It was found that TBH at a concentration of 300 µM in the presence of ATP and palmitic acid inhibits their GP oxidase activity formally in the competitive manner without significant effect on ATPase activity of liver mitochondria. Thiourea antioxidant eliminates this effect of TBH. It is assumed that TBH-induced oxidative stress in the case of ATP-energized mitochondria results in an increase in transport rate of palmitic acid anions from the inner monolayer of the inner membrane to its outer monolayer. This, in turn, is accompanied by an increase in the density of negative charges on the outer surface of the inner mitochondrial membrane and inhibition of GP oxidase activity of liver mitochondrial formally in the competitive manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mráček T., Drahota Z., Houštěk J. 2013. The function and the role of the mitochondrial glycerol-3-phosphate dehydrogenase in mammalian tissues. Biochim. Biophys. Acta. 1827, 401–410.

    Article  PubMed  Google Scholar 

  2. Garrib A., McMurray W.C. 1986. Purification and characterization of glycerol-3-phosphate dehydrogenase (flavin-linked) from rat liver mitochondria. J. Biol. Chem. 261, 8042–8048.

    CAS  PubMed  Google Scholar 

  3. Mráček T., Holzerová E., Drahota Z., Kovářová N., Vrbacký M., Ješina P., Houštěk J. 2014. ROS generation and multiple forms of mammalian mitochondrial glycerol-3-phosphate dehydrogenase. Biochim Biophys Acta. 1837, 98–111.

    Article  PubMed  Google Scholar 

  4. Wojtczak L., Nalecz M.J. 1979. Surface charge of biological membranes as a possible regulator of membrane-bound enzymes. Eur. J. Biochem. 94, 99–107.

    Article  CAS  PubMed  Google Scholar 

  5. Denton R.M. 2009. Regulation of mitochondrial dehydrogenases by calciumions. Biochim. Biophys. Acta. 1787, 1309–1316.

    Article  CAS  PubMed  Google Scholar 

  6. Amler E., Rauchová H., Svobodová J., Drahota Z. 1986. Regulation of glycerol-3-phosphate oxidation in mitochondria by changes in membrane microviscosity. FEBS Lett. 206, 1–3.

    Article  CAS  PubMed  Google Scholar 

  7. Girotti A.W. 1998. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res. 39, 1529–1542.

    CAS  PubMed  Google Scholar 

  8. Skulachev V.P., Bogachev A.V., Kasparinsky F.O. 2010. Membrannaja bioenergetika (Membrane bioenergetics). Moscow, Moscow University Press.

    Google Scholar 

  9. Zorov D.B., Juhaszova M., Sollott S.J. 2014. Mitochondrial reactive oxygen species (ROS) and ROSinduced ROS release. Physiol. Rev. 94, 909–950.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Eremeev S.A., Motovilov K.A., Volkov E.M., Yaguzhinskii L.S. 2011. The new member of the class of membranotropic uncouplers–SkQ3. Biol. Membrany (Rus.). 28, 339–344.

    CAS  Google Scholar 

  11. Isaev N.K., Novikova S.V., Stelmashook E.V., Barskov I.V., Silachev D.N., Khaspekov L.G., Skulachev V.P., Zorov D.B. 2012. Mitochondria-targeted plastoquinone antioxidant SkQR1 decreases trauma-induced neurological deficit in rat. Biokhimia. (Rus.). 77, 1201–1206.

    Google Scholar 

  12. Plotnikov E.Y., Morosanova M.A., Pevzner I.B., Zorova L.D., Manskikh V.N., Pulkova N.V., Galkina S.I., Skulachev V.P., Zorov D.B. 2013. Protective effect of mitochondria-targeted antioxidants in an acute bacterial infection. Proc. Natl. Acad. Sci. USA. 110, E3100–E3108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Samartsev V.N., Smirnov A.V., Zeldi I.P., Markova O.V., Mokhova E.N., Skulachev V.P. 1997. Involved of aspartate/glutamate antiporter in fatty acid-induced uncoupling of liver mitochondria. Biochim. Biophys. Acta. 1339, 251–257.

    Article  Google Scholar 

  14. Samartsev V.N., Kozhina O.V. 2008. Oxidative stress as regulatory factor for fatty-acid-induced uncoupling involving liver mitochondrial ADP/ATP and aspartate/glutamate antiporters of old rats. Biokhimia. (Rus.). 73, 972–980.

    Google Scholar 

  15. Kozhina O.V., Samartsev V.N. 2010. Uncoupling activity of fatty acids in liver mitochondria in the presence of substrates of ADP/ATP and aspartate/glutamate antiporters is increased under oxidative stress. Biol. Membrany (Rus.). 27, 184–188.

    CAS  Google Scholar 

  16. Chinopoulos C., Adam-Vizi V. 2010. Mitochondria as ATP consumers in cellular pathology. Biochim. Biophys. Acta. 1802, 221–227.

    Article  CAS  PubMed  Google Scholar 

  17. Kamo N., Muratsugu M., Hondoh R., Kobatake Y. 1979. Membrane potential of mitochondria measured with an electrode sensitive to tetraphenylphosphonium and reationship between proton electrochemical potential and phosphorylation potential in steady state. J. Membr. Biol. 49, 105–121.

    Article  CAS  PubMed  Google Scholar 

  18. Mitchell P., Moyle J. 1970. Influence of aurovertin on affinity of mitochondrial adenosine triphosphatase for ATP and ADP. FEBS Lett. 25, 309–311.

    Article  Google Scholar 

  19. Wojtczak L., Schönfeld P. 1993. Effect of fatty acids on energy coupling processes in mitochondria. Biochim. Biophys. Acta. 1183, 41–57.

    Article  CAS  PubMed  Google Scholar 

  20. Samartsev V.N., Rybakova S.R., Dubinin M.V. 2013. Interaction of free fatty acids with mitochondria during uncoupling of oxidative phosphorylation. Biofizika (Rus.). 58, 481–487.

    CAS  Google Scholar 

  21. Benz R., McLaughlin S. 1983. The molecular mechanisms of action of the proton ionophore FCCP (carbonylcyanide p-triflurometoxy phenylhydrozone). Biophys. J. 41, 381–398.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Azzu V., Parker N., Brand M.D. 2008. High membrane potential promotes alkenal-induced mitochondrial uncoupling and influences adenine nucleotide translocase conformation. Biochem. J. 413, 323–332.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Haynes R.C. Jr, Picking R.A. 1984. The interaction of glucagon treatment and uncoupler concentration on ATPase activity of rat liver mitochondria. J. Biol. Chem. 259, 13228–13234.

    CAS  PubMed  Google Scholar 

  24. Veech R.L., Lawson J.W., Cornell N.W., Krebs H.A. 1979. Cytosolic phosphorylation potential. J. Biol. Chem. 254, 6538–6547.

    CAS  PubMed  Google Scholar 

  25. Brand M.D., Lehninger A.L. 1977. H+/ATP ratio during ATP hydrolysis by mitochondria: Modification of the chemiosmotic theory. Proc. Natl. Acad. Sci. USA. 74, 1955–1959.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kozhina O.V., Stepanova L.A., Samartsev V.N. 2007. Peculiarities of the uncoupling action of fatty acids in liver mitochondria under oxidative stress. Biol. Membrany (Rus.). 24, 421–429.

    CAS  Google Scholar 

  27. Ježek J., Jabůrek M., Zelenka J., Ježek P. 2010. Mitochondrial phospholipase A2 activated by reactive oxygen species in heart mitochondria induces mild uncoupling. Physiol. Res. 59, 737–747.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Samartsev.

Additional information

Original Russian Text © V.N. Samartsev, M.V. Dubinin, O.E. Krasnoshchekova, 2015, published in Biologicheskie Membrany, 2015, Vol. 32, No. 3, pp. 185–193.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samartsev, V.N., Dubinin, M.V. & Krasnoshchekova, O.E. Features of inhibition of glycerol-3-phosphate oxidase activity of liver mitochondria by palmitic acid in the presence of ATP and tert-butylhydroperoxide. Biochem. Moscow Suppl. Ser. A 9, 210–217 (2015). https://doi.org/10.1134/S1990747815020178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747815020178

Keywords

Navigation