Skip to main content
Log in

Activated protein C is the regulator of the NF-κB activity under the conditions of glutamate toxicity

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Activated protein C (APC) is one of the key proteinases of hemostasis exhibiting anti-coagulant, anti-inflammatory, and protective functions. In the present work, the anti-apoptotic effect of the proteinase on the glutamate toxicity model in cultured hippocampal neurons has been discovered. It is demonstrated that high concentrations of glutamate induce translocation of p65 subunit of transcription factor NF-κB into the nucleus, while low concentrations of APC prevent this effect of the neurotransmitter. Moreover, helenalin, a specific inhibitor of NF-κBp65, similar to APC, increased survival of neurons under toxic conditions. Using specific blocking antibodies, we have revealed that APC via its own receptor (endothelial protein C receptor) and protease activated receptor 1 (PAR1) inhibits glutamate-induced activation of transcription factor NF-κB. Thus, APC in low concentrations protects hippocampal neurons from glutamate-induced death through a receptor-dependent regulation of the activity of p65 subunit of transcription factor NF-κB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Striggow F., Riek M., Breder J., Henrich-Noack P., Reymann K. G., Reiser G. 2000. The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. Proc. Natl. Acad. Sci. USA. 97, 2264–2269.

    Article  PubMed  CAS  Google Scholar 

  2. Bano D., Nicotera P. 2007. Ca2+ signals and neuronal death in brain ischemia. Stroke. 38(2 Suppl), 674–676.

    Article  PubMed  CAS  Google Scholar 

  3. Macko R.F., Killewich L.A., Fernández J.A., Cox D.K., Gruber A., Griffin J.H. 1999. Brain-specific protein C activation during carotid artery occlusion in humans. Stroke. 30(3), 542–545.

    Article  PubMed  CAS  Google Scholar 

  4. Joyce D.E., Gelbert L., Ciaccia A., DeHoff B., Grinnell B.W. 2001.Gene expression and profile of antithrombotic protein C defines new mechanisms modulating inflammation and apoptosis. J. Biol. Chem. 276, 11199–11203.

    Article  PubMed  CAS  Google Scholar 

  5. Cheng T., Liu D., Griffin J.H., Fernández J.A., Castellino F., Rosen E.D., et al. 2003. Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat. Med. 9, 338–342.

    Article  PubMed  CAS  Google Scholar 

  6. Gorbacheva L., Davidova O., Sokolova E., Ishiwata S., Pinelis V., Strukova S., Reiser G. 2009. Endothelial protein C receptor is expressed in rat cortical and hippocampal neurons and is necessary for protective effect of activated protein C at glutamate excitotoxicity. J. Neurochem. 111(4), 967–975.

    Article  PubMed  CAS  Google Scholar 

  7. Gusev E.I. 2003. Mozg: teoreticheskie i klinicheskie aspekty (Brain: Theoretical and Clinical Aspects). Moscow: Meditsyna.

    Google Scholar 

  8. Hayden M.S., Ghosh S. 2004. Signaling to NF-κB. Genes Dev. 18, 2195–224.

    Article  PubMed  CAS  Google Scholar 

  9. Levi M., Poll T., Büller H.R. 2004. Bidirectional relation between inflammation and coagulation. Circulation. 109, 2698–2704.

    Article  PubMed  Google Scholar 

  10. Irving E.A., Hadingham S.J., Roberts J., Gibbons M., Chabot-Fletcher M., Roshak A., Parsons A.A. 2000. Decreased nuclear factor-κB DNA binding activity following permanent focal cerebral ischaemia in the rat. Neurosci. Lett. 288(1), 45–48.

    Article  PubMed  CAS  Google Scholar 

  11. Zou J., Crews F. 2006. CREB and NF-κB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell Mol. Neurobiol. 26(4–6), 385–405.

    PubMed  CAS  Google Scholar 

  12. Khodorov B.I., Storozhevykh T.P., Surin A.M., Sirikina E.G., Yuryavichus A.I., Borodin A.V., Vinskaya N.P., Khaspekov L.G., Pinelis V.G. 2001. Mitochondrial depolarization plays a dominant role in the glutamate-induced calcium homeostasis in neurons. Biol. membranes (Rus.). 18(6), 421–432.

    CAS  Google Scholar 

  13. Mikenberg I., Widera D., Kaus A., Kaltschmidt B., Kaltschmidt C. 2007. Transcription factor NF-κB is transported to the nucleus via cytoplasmic dynein/ dynactin motor complex in hippocampal neurons. PLoS ONE. 2(7), 589.

    Article  Google Scholar 

  14. Strukova S., Gorbacheva L., Storozhevykh T., Pinelis V., Smirnov M. 2006. Factor Xa like to thrombin can protect hippocampal neurons from glutamate toxicity. Thromb Haemost. 4(6), 1409–1410.

    Article  CAS  Google Scholar 

  15. Gorbacheva L.R., Storozhevykh T.P., Pinelis V.G., Ishiwata S., Strukova S.M. 2007. Protease-activated receptor (PAR)1-mediated anti-apoptotic effect of activated protein C on glutamate excitotoxicity in hippocampal neurons. Thromb. Haemost. 98(5), 1150–1152.

    PubMed  CAS  Google Scholar 

  16. Joyce D.E., Grinnell B.W. 2002. Recombinant human activated protein C attenuates the inflammatory response in endothelium and monocytes by modulating nuclear factor-κB. Crit. Care Med. 30(5), 288–293.

    Article  Google Scholar 

  17. Toltl L.J., Austin R.C., Liaw P.C. 2011. Activated protein C modulates inflammation, apoptosis and tissue factor procoagulant activity by regulating endoplasmic reticulum calcium depletion in blood monocytes. J. Thromb. Haemost. 9(3), 82–92.

    Article  Google Scholar 

  18. Cheng T., Petraglia A.L., Li Z., Thiyagarajan M., Zhong Z., Wu Z., Liu D., Maggirwar S.B., Deane R., Fernaández J.A., LaRue B., Griffin J.H., Chopp M., Zlokovic B.V. 2006. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat. Med. 12, 1278–1285.

    Article  PubMed  CAS  Google Scholar 

  19. Yamauchi T., Sakurai M., Abe K., Takano H., Sawa Y. 2006. Neuroprotective effects of activated protein C through induction of insulin-like growth factor-1 (IGF-1), IGF-1 receptor, and its downstream signal phosphorylated serine-threonine kinase after spinal cord ischemia in rabbits. Stroke. 37, 1081–1086.

    Article  PubMed  CAS  Google Scholar 

  20. Schwaninger M., Inta I., Herrmann O. 2006. NF-κB signaling in cerebral ischaemia. Biochem. Soc. Trans. 34, 1291–1294.

    Article  PubMed  CAS  Google Scholar 

  21. Fan Y., Dutta J., Gupta N., Fan G., Gelinas C. 2008. Regulation of programmed cell death by NF-κB and its role in tumorigenesis and therapy. Adv. Exp. Med. Biol. 615, 223–250.

    Article  PubMed  CAS  Google Scholar 

  22. Hayden M.S., Ghosh S. 2008. Shared principles in NF-κB signaling. Cell. 132, 344–362.

    Article  PubMed  CAS  Google Scholar 

  23. Ridder D.A., Schwaninger M. 2009. NF-κB signaling in cerebral ischemia. Neuroscience. 158, 995–1006.

    Article  PubMed  CAS  Google Scholar 

  24. Riewald M., Petrovan,.J., Donner A., Ruf W. 2003. Activated protein C signals through the thrombin receptor PAR1 in endothelial cells. J. Endotoxin. Res. 9, 317–321.

    PubMed  CAS  Google Scholar 

  25. Riewald M., Ruf W. 2005. Protease-activated receptor-1 signaling by activated protein C in cytokine-perturbed endothelial cells is distinct from thrombin signaling. J. Biol. Chem. 280, 19808–19814.

    Article  PubMed  CAS  Google Scholar 

  26. Saito T., Bunnett N.W. 2005. Protease-activated receptors: regulation of neuronal function. Neuromol. Med. 7, 79–99.

    Article  CAS  Google Scholar 

  27. Mosnier L.O., Zlokovic B.V., Griffin J.H. 2007. The cytoprotective protein C pathway. Blood. 109, 3161–3172.

    Article  PubMed  CAS  Google Scholar 

  28. Johnston M.V. 2005. Excitotoxicity in perinatal brain injury. Brain Pathol. 15(3), 234–240.

    Article  PubMed  CAS  Google Scholar 

  29. Matute C., Domercq M., Sánchez-Gómez M.V. 2006. Glutamate-mediated glial injury: mechanisms and clinical importance. Glia. 53(2), 212–224.

    Article  PubMed  Google Scholar 

  30. Young K.W., Piñon L.G., Bampton E.T., Nicotera P.J. 2010. Different pathways lead to mitochondrial fragmentation during apoptotic and excitotoxic cell death in primary neurons. Biochem. Mol. Toxicol. 24(5), 335–341.

    Article  CAS  Google Scholar 

  31. Desfeux A., Elhazi F., Jégou S., Legros H., Marret S., Laudenbach V., Gonzalez B.J. 2010. Dual effect of glutamate on GABAergic interneuron survival during cerebral cortex development in mice neonates. Cereb. Cortex. 20(5), 1092–1108.

    Article  PubMed  Google Scholar 

  32. Schaller B., Graf R. 2004. Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J. Cereb. Blood Flow Metab. 24(4), 351–371.

    Article  PubMed  Google Scholar 

  33. Ray S.K. 2006. Currently evaluated calpain and caspase inhibitors for neuroprotection in experimental brain ischemia. Curr. Med. Chem. 13(28), 3425–3440.

    Article  PubMed  CAS  Google Scholar 

  34. Griffin J.H., Fernandez J.A., Mosnier L.O., Liu D., Cheng T., Guo H., Zlokovic B.V. 2006. The promise of protein C. Blood Cells Mol. Dis. 36(2), 211–216.

    Article  PubMed  CAS  Google Scholar 

  35. Mattson M.P., Culmsee C., Yu Z.F. 2000. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res. 301, 173–187.

    Article  PubMed  CAS  Google Scholar 

  36. Yalcin A., Koulich E., Mohamed S., Liu L., D’Mello S.R., 2003. Apoptosis in cerebellar granule neurons is associated with reduced interaction between CREB-binding protein and NF-κB. J. Neurochem. 84, 397–408.

    Article  PubMed  CAS  Google Scholar 

  37. Pizzi M., Spano P. 2006. Distinct roles of diverse nuclear factor-κB complexes in neuropathological mechanisms. Eur. J. Pharmacol. 545, 22–28.

    Article  PubMed  CAS  Google Scholar 

  38. Carroll J.E., Hess D.C., Howard E.F., Hill W.D. 2000. Is nuclear factor-κB a good treatment target in brain ischemia/reperfusion injury? Neuroreport. 11(9), 1–4.

    Google Scholar 

  39. Nakano H., Nakajima A., Sakon-Komazawa S., Piao J.H., Xue X., Okumura K. 2006. Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death Differ. 13(5), 730–737.

    Article  PubMed  CAS  Google Scholar 

  40. Crack P.J., Taylor J.M., Ali U., Mansell A., Hertzog P.J. 2006. Potential contribution of NF-κB in neuronal cell death in the glutathione peroxidase-1 knockout mouse in response to ischemia-reperfusion injury. Stroke. 37(6), 1533–1538.

    Article  PubMed  CAS  Google Scholar 

  41. Massa P.T., Aleyasin H., Park D.S., Mao X., Barger S.W. 2006. NF-κB in neurons? The uncertainty principle in neurobiology. J. Neurochem. 97(3), 607–618.

    Article  PubMed  CAS  Google Scholar 

  42. Karin M., Lin A. 2002. NF-κB at the crossroads of life and death. Nat. Immunol. 3, 221–227.

    Article  PubMed  CAS  Google Scholar 

  43. Strukova S.M. 2004. The role of platelets and serine proteases in coupling of blood clotting and inflammation. Biokhimia (Rus.). 69, 1314–1331.

    Google Scholar 

  44. Bernard G.R., Vincent J.-.L, Laterre P.-F., LaRosa S.P., Dhainaut J.-F., Lopez-Rodriguez A., et al. 2001. Efficacy and safety of recombinant human activated protein C for severe sepsis. N. Engl. J. Med. 344, 699–709.

    Article  PubMed  CAS  Google Scholar 

  45. Ely E.W., Laterre P.F., Angus D.C., et al. 2003. Drotrecogin alfa (activated) administration across clinically important subgroups of patients with severe sepsis. Crit. Care Med. 31, 12–19.

    Article  PubMed  CAS  Google Scholar 

  46. Esmon C.T. 2003. The protein C pathway. Chest. 124, 26–32.

    Article  Google Scholar 

  47. Ossovskaya V.S., Bunnett N.W. 2004. Protease-activated receptors: contribution to physiology and disease. Physiol. Rev. 84, 579–621.

    Article  PubMed  CAS  Google Scholar 

  48. Feistritzer C., Mosheimer B.A., Sturn D.H., Riewald M., Patsch J.R., Wiedermann C.J. 2006. Endothelial protein C receptor-dependent inhibition of migration of human lymphocytes by protein C involves epidermal growth factor receptor. J. Immunol. 176, 1019–1025.

    PubMed  CAS  Google Scholar 

  49. Okuno S., Saito A., Hayashi T., Chan P.H. 2004. The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J. Neurosci. 24, 7879–7887.

    Article  PubMed  CAS  Google Scholar 

  50. Guo H., Liu D., Gelbard H., Cheng T., Insalaco R., Fernandez J.A., et al. 2004. Activated protein C prevents neuronal apoptosis via protease activated receptors 1 and 3. Neuron. 41, 563–572.

    Article  PubMed  CAS  Google Scholar 

  51. Barone F.C. 2009. Ischemic stroke intervention requires mixed cellular protection of the penumbra. Curr. Opin. Investig. Drugs. 10(3), 220–223.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Gorbacheva.

Additional information

Original Russian Text © L.R. Gorbacheva, V.G. Pinelis, G. Reiser, S.M. Strukova, 2011, published in Biologicheskie Membrany, 2011, Vol. 28, No. 6, pp. 495–506.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorbacheva, L.R., Pinelis, V.G., Reiser, G. et al. Activated protein C is the regulator of the NF-κB activity under the conditions of glutamate toxicity. Biochem. Moscow Suppl. Ser. A 6, 56–66 (2012). https://doi.org/10.1134/S1990747811060067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747811060067

Keywords

Navigation