Skip to main content
Log in

Suppression of the plasma membrane H+-conductance on the background of high H+-pump activity in dithiothreitol-treated Chara cells

  • Articles
  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

Photosynthesizing cells of characean algae exposed to light are able to produce pH bands corresponding to alternate areas with dominant H+-pump activity and high H+-conductance of the cell membrane. The action potential generation temporally arrests the counter-directed H+ fluxes, which gives rise to opposite pH shifts in different cell regions and represents a suitable indicator for activities of the plasma membrane H+-transporting systems. Measurements of pH near the cell surface by means of microelectrodes and microspectrophotometry in the presence of pH-indicating dye thymol blue have shown that the treatment of cells with dithiothreitol (SH-group reducing agent) suppresses pH changes induced by the action potential generation in the alkaline cell areas and considerably increases the concurrent pH changes in the acid regions. Measurements of plasma membrane resistance in the alkaline zones revealed that dithiothreitol inhibits the light-dependent conductance of the resting cell and diminishes the conductance inactivation caused by the action potential generation. The data suggest that the reduction of accessible disulfide bonds results in the decrease of H+-conductance, whereas the activity of plasma membrane H+-pump remains unimpaired or is even enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

action potential

DTT:

dithiothreitol

pHo :

pH in the outer medium in the proximity to cell surface

References

  1. DeCoursey T.E. 2003. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475–579.

    CAS  PubMed  Google Scholar 

  2. Miedema H., Felle H., Prins H.B.A. 1992. Effect of high pH on the plasma membrane potential and conductance in Elodea densa. J. Membrane Biol. 128, 63–69.

    Article  CAS  Google Scholar 

  3. Miedema H., Prins H.B.A. 1992. Coupling of proton fluxes in the polar leaves of Potamogeton lucens L. J. Exp. Bot. 43, 907–914.

    Article  CAS  Google Scholar 

  4. Lucas W.J., Keifer D.W., Sanders D. 1983. Bicarbonate transport in Chara corallina: Evidence for cotransport of HCO 3 with H+. J. Membrane Biol. 73, 263–274.

    Article  CAS  Google Scholar 

  5. Bulychev A.A., Cherkashin A.A., Rubin A.B., Vredenberg W.J., Zykov V.S., Müller S.C. 2001. Comparative study on photosynthetic activity of chloroplasts in acid and alkaline zones of Chara corallina. Bioelectrochemistry. 53, 225–232.

    Article  CAS  PubMed  Google Scholar 

  6. Bulychev A.A., Vredenberg W.J. 2003. Spatio-temporal patterns of photosystem II activity and plasma-membrane proton flows in Chara corallina cells exposed to overall and local illumination. Planta. 218, 143–151.

    Article  CAS  PubMed  Google Scholar 

  7. Krupenina N.A., Bulychev A.A., Roelfsema M.R.G., Schreiber U. 2008. Action potential in Chara cells intensifies spatial patterns of photosynthetic electron flow and non-photochemical quenching in parallel with inhibition of pH banding. Photochem. Photobiol. Sci. 7, 681–688.

    Article  CAS  PubMed  Google Scholar 

  8. Shimmen T., Wakabayashi A. 2008. Involvement of membrane potential in alkaline band formation by internodal cells of Chara corallina. Plant Cell Physiol. 49, 1614–1620.

    Article  CAS  PubMed  Google Scholar 

  9. Shimmen T., Yonemura S., Negoro M., Lucas W.J. 2003. Studies on alkaline band formation in Chara corallina: Ameliorating effect of Ca2+ on inhibition induced by osmotic shock. Plant Cell Physiol. 44, 957–960.

    Article  CAS  PubMed  Google Scholar 

  10. Bulychev A.A., Krupenina N.A. 2009. Transient removal of alkaline zones after excitation of Chara cells is associated with inactivation of high conductance in the plasmalemma. Plant Signaling & Behavior. 4, 24–31.

    Article  Google Scholar 

  11. Bulychev A.A., van den Wijngaard P.W.J., de Boer A.H. 2005. Spatial coordination of chloroplast and plasma membrane activities in Chara cells and its disruption through inactivation of 14-3-3 proteins. Biochemistry (Moscow). 70, 55–61.

    CAS  Google Scholar 

  12. Lucas W.J., Nuccitelli R. 1980. HCO 3 and OH transport across the plasmalemma of Chara: Spatial resolution obtained using extracellular vibrating probe. Planta. 150, 120–131.

    Article  CAS  Google Scholar 

  13. Bulychev A.A., Kamzolkina N.A., Luengviriya J., Rubin A.B., Müller S.C. 2004. Effect of a single excitation stimulus on photosynthetic activity and light-dependent pH banding in Chara cells. J. Membrane Biol. 202, 11–19.

    Article  CAS  Google Scholar 

  14. Bulychev A.A., Krupenina N.A. 2010. Inactivation of plasmalemma conductance in alkaline zones of Chara corallina after generation of action potential. Biochemistry (Moscow), Suppl. Series A. 4, 232–239.

    Article  Google Scholar 

  15. Plieth C., Tabrizi H., Hansen U.-P. 1994. Relationship between banding and photosynthetic activity in Chara corallina as studied by the spatially different induction curves of chlorophyll fluorescence observed by an image analysis system. Physiol. Plant. 91, 205–211.

    Article  CAS  Google Scholar 

  16. Carpaneto A., Cantu A.M., Gambale F. 1999. Redox agents regulate ion channel activity in vacuoles from higher plant cells. FEBS Lett. 442, 129–132.

    Article  CAS  PubMed  Google Scholar 

  17. Fedorenko A.L., Lozovaya N.A., Volkova T.M., Kryshtal O.A. 2006. Antioxidant-caused changes in the permeability of proton-gated ion channels for sodium and calcium. Neurophysiology. 38, 158–162.

    Article  CAS  Google Scholar 

  18. Nelson N., Harvey W.R. 1999. Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol. Rev. 79, 361–385.

    CAS  PubMed  Google Scholar 

  19. Bulychev A.A., Kamzolkina N.A., Müller S., Cherkashin A.A., Rubin A.B. 2004. Temporal suppression of periodic pH profile along a charophyte cell after the generation of action potential, Dokl. Biochem. Biophys. 396, 128–131.

    Article  CAS  PubMed  Google Scholar 

  20. Smith J.R., Walker N.A. 1983. Membrane conductance of Chara measured in the acid and basic zones. J. Membr. Biol. 73, 193–202.

    Article  Google Scholar 

  21. Smith J.R., Walker N.A. 1985. Effects of pH and light on the membrane conductance measured in the acid and basic zones of Chara. J. Membr. Biol. 83, 193–205.

    Article  Google Scholar 

  22. Bisson M.A., Walker N.A. 1980. The Chara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH. J. Membr. Biol. 56, 1–7.

    Article  CAS  Google Scholar 

  23. Sokolik A.I., Yurin V.M. 1986. Potassium channels in plasLmalemma of Nitella cells at rest. J. Membr. Biol. 89, 9–22.

    Article  CAS  Google Scholar 

  24. Petrov V.V., Smirnova V.V., Okorokov L.A. 1992. Mercaptoethanol and dithiothreitol decrease the difference of electrochemical proton potentials across the yeast plasma and vacuolar membranes and activate their H+-ATPases. Yeast. 8, 589–598.

    Article  CAS  PubMed  Google Scholar 

  25. Gilmore A.M., Yamamoto H.Y. 1992. Dark induction of zeaxanthin-dependent nonphotochemical fluorescence quenching mediated by ATP. Proc. Natl. Acad. Sci. USA. 89, 1899–1903.

    Article  CAS  PubMed  Google Scholar 

  26. Schwarz O., Schürmann P., Strotmann H. 1997. Kinetics and thioredoxin specificity of thiol modulation of the chloroplast H+-ATPase. J. Biol. Chem. 272, 16924–16927.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bulychev.

Additional information

Original Russian Text © S.O. Dodonova, N.A. Krupenina, A.A. Bulychev, 2010, published in Biologicheskie Membrany, 2010, Vol. 27, No. 5, pp. 404–412.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodonova, S.O., Krupenina, N.A. & Bulychev, A.A. Suppression of the plasma membrane H+-conductance on the background of high H+-pump activity in dithiothreitol-treated Chara cells. Biochem. Moscow Suppl. Ser. A 4, 389–396 (2010). https://doi.org/10.1134/S1990747810040094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990747810040094

Keywords

Navigation