Skip to main content
Log in

Regulation of p53 Protein Function in Response to Heat Shock

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

p53 protein encoded by the TP53 gene performs one of the most important functions in the process of human tumor suppression. Mutations in the DNA-binding domain of p53 change its conformation, which contributes to the formation of aberrant intracellular protein complexes including heat shock proteins (Hsp70). This can provoke an occurrence of the aggressive types of tumors including breast cancer. Thereby, the study of the regulation mechanisms of mutant p53 in these stable complexes seems extremely relevant. The aim of this work was to study the regulation of p53 protein mutant for R175H (mutp53−R175H) under heat stress in MDA–MB-231 breast cancer cells in vitro. It was found that heat shock caused a drastic decrease in the level of wtp53 (wild-type p53) and mutp53–R175H proteins. It was gradually restored after the stress ceased. We also have found that mutp53–R175H increases the intracellular level of Hsp70 in normal conditions and reduces it after heat shock. At the same time, mutp53–R175H protein changes its intracellular localization, both in normal conditions and in response to heat shock being in the composition of Hsp70 protein complexes. Thus, the behavior of wtp53 and mutp53–R175H in response to heat shock appears to differ due to different interactions with protein complexes that regulate their stability and intracellular localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Barlev, N.A., Sayan, B.S., Candi, E., and Okorokov, A.L., The microRNA and p53 families join forces against cancer, Cell Death Differ., 2010, vol. 17, pp. 373–375.

    Article  CAS  PubMed  Google Scholar 

  2. Brooks, C.L., Li, M., Hu, M., Shi, Y., and Gu, W., The P53–Mdm2–HAUSP complex is involved in p53 stabilization by HAUSP, Oncogene, 2007, vol. 26, pp. 7262–7266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Calderwood, S.K., Khaleque, M.A., Sawyer, D.B., and Ciocca, D.R., Heat shock proteins in cancer: chaperones of tumorigenesis, Trends Biochem. Sci., 2006, vol. 31, pp. 164–172.

    Article  CAS  PubMed  Google Scholar 

  4. Dai, C. and Gu, W., p53 post-translational modification: deregulated in tumorigenesis, Nat. Rev. Cancer, 2010, vol. 16, pp. 528–536.

    CAS  Google Scholar 

  5. Daks, A.A., Melino, D., and Barlev, N.A., The role of different E3 ubiquitin ligases in regulation of the P53 tumor suppressor protein, Tsitologiia, 2013, vol. 55, no. 10, pp. 673–687.

    CAS  PubMed  Google Scholar 

  6. Davidovich, P., Aksenova, V., Petrova, V., Tentler, D., Orlova, D., Smirnov, S., Gurzhiy, V., Okorokov, A.L., Garabadzhiu, A., Melino, G., Barlev, N., and Tribulovich, V., Discovery of novel isatin-based p53 inducers, Med. Chem. Lett., 2015, vol. 6, pp. 856–860.

    Article  CAS  Google Scholar 

  7. Fedorova, O., Daks, A., Petrova, V., Petukhov, A., Lezina, L., Shuvalov, O., Davidovich, P., Kriger, D., Lomert, E., Tentler, D., Kartsev, V., Uyanik, B., Tribulovich, V., Demidov, O., Melino, G., and Barlev, N.A., Novel isatin-derived molecules activate p53 via interference with Mdm2 to promote apoptosis, Cell Cycle, 2018, vol. 17, pp. 1917–1930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haupt, Y., Maya, R., Kazaz, A., and Oren, M., Mdm2 promotes the rapid degradation of p53, Nature, 1997, vol. 387, pp. 296–299.

    Article  CAS  PubMed  Google Scholar 

  9. King, F.W., Wawrzynow, A., Hohfeld, J., and Zylicz, M., Co-chaperones Bag-1, Hop and Hsp40 regulate Hsc70 and Hsp90 interactions with wild-type or mutant p53, EMBO J., 2001, vol. 20, pp. 6297–6305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  11. Li, D., Marchenko, N.D., Schulz, R., Fischer, V., Velasco-Hernandez, T., Talos, F., and Moll, U.M., Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells, Mol. Cancer Res., 2011, vol. 9, pp. 577–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lukashchuk, N. and Vousden, K.H., Ubiquitination and degradation of mutant p53, Mol. Cell Biol., 2007, vol. 27, pp. 8284–8295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marouco, D., Garabadgiu, A.V., Melino, G., and Barlev, N.A., Lysine-specific modifications of p53: a matter of life and death?, Oncotarget, 2013, vol. 4, pp. 1556–1571.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maya, R., Balass, M., Kim, S.-T., Shkedy, D., Leal, J.-F.M., Shifman, O., Moas, M., Buschmann, T., Ronai, Z., Shiloh, Y., Kastan, M., Katzir, E, and Oren, M., ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage, Genes Dev., 2001, vol. 15, pp. 1067–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meek, D.W. and Anderson, C.W., Posttranslational modification of p53: cooperative integrators of function, Cold Spring Harb. Perspect. Biol., 2009. https://doi.org/10.1101/cshperspect.a000950

  16. Mittenberg, A.G., Moiseeva, T.N., and Barlev, N.A., Role of proteasomes in transcription and their regulation by covalent modifications, Front. Biosci., 2008, vol. 13, pp. 7184–7192.

    Article  CAS  PubMed  Google Scholar 

  17. Momand, J., Zambetti, G.P., Olson, D.C., George, D., and Levine, A.J., The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation, Cell, 1992, vol. 69, pp. 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  18. Muller, P., Hrstka, R., Coomber, D., Lane, D.P., and Vojtesek, B., Chaperone-dependent stabilization and degradation of p53 mutants, Oncogene, 2008, vol. 27, pp. 3371–3383.

    Article  CAS  PubMed  Google Scholar 

  19. Narayanan, N.K., Narayanan, B.A., Bosland, M., Condon, M.S., and Nargi, D., Docosahexaenoic acid in combination with celecoxib modulates HSP70 and p53 proteins in prostate cancer cells, Int. J. Cancer, 2006, vol. 119, pp. 1586–1598.

    Article  CAS  PubMed  Google Scholar 

  20. Olivier, M., Langer, A., Carrieri, P., Bergh, J., Klaar, S., Eyfjord, J., Theillet, C., Rodriguez, C., Lidereau, R., Bieche, I., Varley, J., Bignon, Y., Uhrhammer, N., Winqvist, R., Jukkola-Vuorinen, A., Niederacher, D., Kato, S., Ishioka, C., Hainaut, P., and Borresen-Dale, A.-L., The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer, Clin. Cancer Res., 2006, vol. 12, pp. 1157–1167.

    Article  CAS  PubMed  Google Scholar 

  21. Olivier, M., Hollstein, M., and Hainaut, P., TP53 mutations in human cancers: origins, consequences, and clinical use, Cold Spring Harb. Perspect. Biol., 2010. https://doi.org/10.1101/cshperspect.a001008

  22. Peng, Y.H., Chen, L.H., Li, C.G., Lu, W.G., and Chen, J.D., Inhibition of MDM2 by hsp90 contributes to mutant p53 stabilization, J. Biol. Chem., 2001, vol. 276, pp. 40 583–40 590.

    Article  Google Scholar 

  23. Petitjean, A., Mathe, E., Kato, S., Ishioka, C., Tavtigian, S.V., Hainaut, P., and Olivier, M., Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database, Hum. Mutat., 2007, vol. 28, pp. 622–629.

    Article  CAS  PubMed  Google Scholar 

  24. Pomerantz, J., Schreiber-Agus, N., Liegeois, N.J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H.W., Cordon-Cardo, C., and de Pinho, R.A., The Ink4a tumor suppressor gene product, p19 Arf, Iinteracts with MDM2 and neutralizes MDM2’s inhibition of p53, Cell, 1998, vol. 92, pp. 713–723.

    Article  CAS  PubMed  Google Scholar 

  25. Reinhardt, H.C. and Schumacher, B., The p53 network: cellular and systemic DNA damage responses in aging and cancer, Trends Genet., 2012, vol. 28, pp. 128–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Steiner, K., Graf, M., Hecht, K., Reif, S., Rossbacher, L., Pfister, K., Kolb, H.-J., Schmetzer, H.M., and Multhoff, G., High HSP70-membrane expression on leukemic cells from patients with acute myeloid leukemia is associated with a worse prognosis, Leukemia, 2006, vol. 20, pp. 2076–2079.

    Article  CAS  PubMed  Google Scholar 

  27. Vassilev, L.T., Vu, B.T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., Kong, N., Kammlott, U., Lukacs, C., Klein, C., Fotouhi, N., and Liu, E.A., In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, Science, 2004, vol. 303, pp. 844–848.

    Article  CAS  PubMed  Google Scholar 

  28. Vogelstein, B., Lane, D., and Levine, A.J., Surfing the p53 network, Nature, 2000, vol. 408, pp. 307–310.

    Article  CAS  PubMed  Google Scholar 

  29. Wiech, M., Olszewski, M.B., Tracz-Gaszewska, Z., Wawrzynow, B., Zylicz, M., and Zylicz, A., Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2, PLoS One, 2012. https://doi.org/10.1371/journal.pone.0051426

  30. Wu, B., Chu, X., Feng, C., Hou, J., Fan, H., Liu, N., Li, C., Kong, X., Ye, X., and Meng, S., Heat shock protein gp96 decreases p53 stability by regulating Mdm2 E3 ligase activity in liver cancer, Cancer Lett., 2015, vol. 359, pp. 325–334.

    Article  CAS  PubMed  Google Scholar 

  31. Yan, W., Jung, Y.S., Zhang, Y., and Chen, X., Arsenic trioxide reactivates proteasome-dependent degradation of mutant p53 protein in cancer cells in part via enhanced expression of Pirh2 E3 ligase, PLoS One, 2014. https://doi.org/10.1371/journal.pone.0103497

  32. Younger, J.M., Ren, H.Y., Chen, L., Fan, C.Y., Fields, A., Patterson, C., and Cyr, D.M., A foldable CFTRΔF508 biogenic intermediate accumulates upon inhibition of the Hsc70–CHIP E3 ubiquitin ligase, J. Cell Biol., 2004, vol. 167, pp. 1075–1085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zylicz, M., King, F.W., and Wawrzynow, A., Hsp70 interactions with the p53 tumour suppressor protein, EMBO J., 2001, vol. 20, pp. 4634–4638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 14-50-00068.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Barlev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by I. Fridlyanskaya

  Abbreviations: HSP—heat shock protein, mutp53—mutant p53 protein, mutp53–R175H—p53 R175H mutant protein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parfenyev, S.E., Smotrova, A.N., Shkliaeva, M.A. et al. Regulation of p53 Protein Function in Response to Heat Shock. Cell Tiss. Biol. 13, 259–267 (2019). https://doi.org/10.1134/S1990519X19040072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X19040072

Keywords:

Navigation