Skip to main content
Log in

Human Peripheral Blood Macrophages As a Model for Studying Glucocerebrosidase Dysfunction

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract—

Decreased activity of glucocerebrosidase (GCase) as a result of mutations in the GBA gene causes Gaucher’s disease (GD), which belongs to the group of lysosomal storage disorders. The risk of Parkinson’s disease in homo- and heterozygous carriers of GBA mutations is elevated seven- to eightfold. Screening of novel compounds designed to enhance GCase activity requires development of in vitro models based on primary cell cultures obtained from patients carrying GBA mutations. In this work, the efficiency of different methods used to culture peripheral blood macrophages of GD patients and control subjects was compared, and GCase activity and lysosphingolipid concentrations were evaluated using tandem mass spectrometry (HPLC‒MS/MS) in dried cell spots. For the first time, the efficacy of restoring the activity of mutant GCase has been assessed in primary macrophages of GD patients cultured in the presence of pharmacological GCase chaperones isofagomine and ambroxol. Based on these results, a convenient method of in vitro screening of candidate pharmacological agents designed to increase GCase activity can be proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aflaki, E., Borger, D., Moaven, N., Stubblefield, B., Rogers, S., Patnaik, S., Schoenen, F., Westbroek, W., Zheng, W., Sullivan, P., Fujiwara, H., Sidhu, R., Khaliq, Z., Lopez, G., Goldstein, D., Ory, D., Marugan, J., and Sidransky, E., A new glucocerebrosidase chaperone reduces -synuclein and glycolipid levels in IPSC-derived dopaminergic neurons from patients with Gaucher disease and parkinsonism, J. Neurosci., 2016, vol. 36, pp. 7441–7452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aflaki, E., Stubblefield, B., Maniwang, E., Lopez, G., Moaven, N., Goldin, E., Marugan, J., Patnaik, S., Dutra, A., Southall, N., Zheng, W., Tayebi, N., and Sidransky, E., Macrophage models of Gaucher disease for evaluating disease pathogenesis and candidate drugs, Sci. Translat. Med., 2014, vol. 6, p. 240ra73. https://doi.org/10.1126/scitranslmed.3008659

    Article  CAS  Google Scholar 

  3. Borger, D.K., Aflaki, E., and Sidransky, E., Applications of IPSC-derived models of Gaucher disease, Ann. Translat. Med., 2015, vol. 3, p. 295.

    Google Scholar 

  4. Brady, R., Enzyme replacement for lysosomal diseases, Ann. Rev. Med., 2006, vol. 57, pp. 283–296.

    Article  CAS  PubMed  Google Scholar 

  5. Dekker, N., van Dussen, L., Hollak, C., Overkleeft, H., Scheij, S., Ghauharali, K., van Breemen, M., Ferraz, M., Groener, J., Maas, M., Wijburg, F., Speijer, D., Tylki-Szymanska, A., Mistry, P., Boot, R., and Aerts, J., Elevated plasma glucosylsphingosine in Gaucher disease: relation to phenotype, storage cell markers, and therapeutic response, Blood, 2011, vol. 118, pp. e118–e127.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Khanna, R., Benjamin, E., Pellegrino, L., Schilling, A., Rigat, B., Soska, R., Nafar, H., Ranes, B., Feng, J., Lun, Y., Powe, A., Palling, D., Wustman, B., Schiffmann, R., Mahuran, D., Lockhart, D., and Valenzano, K., The pharmacological chaperone isofagomine increases the activity of the Gaucher disease L444P mutant form of B-glucosidase, FEBS J., 2010, vol. 277, pp. 1618–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lieberman, R., Wustman, B., Huertas, P., Powe, A., Pine, C., Khanna, R., Schlossmacher, M., Ringe, D., and Petsko, G., Structure of acid beta-glucosidase with pharmacological chaperone provides insight into Gaucher disease, Nat. Chem. Biol., 2007, vol. 3, pp. 101–107.

    Article  CAS  PubMed  Google Scholar 

  8. McNeill, A., Magalhaes, J., Shen, C., Chau, K., Hughes, D., Mehta, A., Foltynie, T., Cooper, J., Abramov, A., Gegg, M., and Schapira, A., Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells, Brain, 2014, vol. 137, pp. 1481–1495.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Messner, M.C. and Cabot, M.C., Glucosylceramide in humans, Adv. Exp. Med. Biol., 2010, vol. 688, pp. 156–164.

    Article  CAS  PubMed  Google Scholar 

  10. Panicker, L., Miller, D., Awad, O., Bose, V., Lun, Y., Park, T., Zambidis, E., Sgambato, J., and Feldman, R., Gaucher IPSC-derived macrophages produce elevated levels of inflammatory mediators and serve as a new platform for therapeutic development, Stem Cells, 2014, vol. 32, pp. 2338–2349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pchelina, S., Baydakova, G., Nikolaev, M., Senkevich, K., Emelyanov, A., Kopytova, A., Miliukhina, I., Yakimovskii, A., Timofeeva, A., Berkovich, O., Fedotova, E., Illarioshkin, S., and Zakharova, E., Blood lysosphingolipids accumulation in patients with Parkinson’s disease with GBA mutations, Mov. Disord., 2018, vol. 33, pp. 1316–1321.

    Article  CAS  Google Scholar 

  12. Pchelina, S., Emelyanov, A., Baydakova, G., Andoskin, P., Senkevich, K., Nikolaev, M., Miliukhina, I., Yakimovskii, A., Timofeeva, A., Fedotova, E., Abramycheva, N., Usenko, T., Kulabukhova, D., Lavrinova, A., Kopytova, A., Garaeva, L., Nuzhnyi, E., Illarioshkin, S., and Zakharova, E., Oligomeric A-synuclein and glucocerebrosidase activity levels in GBA-associated Parkinson’s disease, Neurosci. Lett., 2017, vol. 636, pp. 70–76.

    Article  CAS  PubMed  Google Scholar 

  13. Polo, G., Burlina, A., Kolamunnage, T., Zampieri, M., Dionisi-Vici, C., Strisciuglio, P., Zaninotto, M., Plebani, M., and Burlina, A., Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS/MS, Clin Chem. Lab. Med., 2017, vol. 55, pp. 404–414.

    Article  CAS  Google Scholar 

  14. Rocha, E., Smith, G., Park, E., Cao, H., Brown, E., Hayes, M., Beagan, J., McLean, J., Izen, S., Perez-Torres, E., Hallett, P., and Isacson, O., Glucocerebrosidase gene therapy prevents A-synucleinopathy of midbrain dopamine neurons, Neurobiol. Dis., 2015, vol. 82, pp. 495–503.

    Article  CAS  PubMed  Google Scholar 

  15. Rodríguez-Lavado, J., de la Mata, M., Jiménez-Blanco, J., García-Moreno, M., Benito, J., Díaz-Quintana, A., Sánchez-Alcázar, J., Higaki, K., Nanba, E., Ohno, K., Suzuki, Y., Ortiz Mellet, C., and García Fernández, J., Targeted delivery of pharmacological chaperones for Gaucher disease to macrophages by a mannosylated cyclodextrin carrier, Org. Biomol. Chem., 2014, vol. 12, pp. 2289–2301.

    Article  PubMed  Google Scholar 

  16. Schapira, A. and Gegg, M., Glucocerebrosidase in the pathogenesis and treatment of Parkinson disease, Proc. Natl. Acad. Sci. U. S. A., 2013, vol. 110, pp. 3214–3215.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sidransky, E., Nalls, M., Aasly, J., Aharon-Peretz, J., et al., Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease, New Engl. J. Med., 2009, vol. 361, pp. 1651–1661.

    Article  CAS  PubMed  Google Scholar 

  18. Sun, Y., Liou, B., Xu, Y., Quinn, B., Zhang, W., Hamler, R., Setchell, K., and Grabowski, G., Ex vivo and in vivo effects of isofagomine on acid B-glucosidase variants and substrate levels in Gaucher disease, J. Biol. Chem., 2012, vol. 287, pp. 4275–4287.

    Article  CAS  PubMed  Google Scholar 

  19. Weiss, K., Gonzalez, A., Lopez, G., Pedoeim, L., Groden, C., and Sidransky, E., The clinical management of type 2 Gaucher disease, Mol. Gen. Metabol., 2015, vol. 114, pp. 110–122.

    Article  CAS  Google Scholar 

  20. Wolf, P., Alcalay, R., Liong, C., Cullen, E., Pauciulo, M., Nichols, W., Gan-Or, Z., Chung, W., Faulkner, T., Bentis, C., Pomponio, R., Ma, X., Kate, Zhang, X., Keutzer, J., and Oliva, P., Tandem mass spectrometry assay of B-glucocerebrosidase activity in dried blood spots eliminates false positives detected in fluorescence assay, Mol. Gen. Metab., 2017, vol. 123, pp. 135–139.

    Article  CAS  Google Scholar 

  21. Yadav, A., Shen, D., Shan, X., He, X., Kermode, A., and Vocadlo, D., Fluorescence-quenched substrates for live cell imaging of human glucocerebrosidase activity, J. Am. Chem. Soc., 2015, vol. 137, pp. 1181–1189.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X., Elbin, C., Chuang, W., Cooper, S., Marashio, C., Beauregard, C., and Keutzer, J., Multiplex enzyme assay screening of dried blood spots for lysosomal storage disorders by using tandem mass spectrometry, Clin. Chem., 2008, vol. 54, pp. 1725–1728.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Russian Science Foundation, project no. 17-75-20159.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nikolaev.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. The study was approved by the Ethics Committee of Pavlov Medical University; all subjects signed the informed consent form.

Additional information

Translated by D. Timchenko

Abbreviations: PD—Parkinson’s disease, GD—Gaucher’s disease, HPLC—high-performance liquid chromatography, MS/MS—tandem mass spectrometry, GCase—glucocerebrosidase, GBA—glucocerebrosidase gene, M-CSF—macrophage colony-stimulating factor, HexSph—hexosylsphingosine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, M.A., Kopytova, A.E., Baidakova, G.V. et al. Human Peripheral Blood Macrophages As a Model for Studying Glucocerebrosidase Dysfunction. Cell Tiss. Biol. 13, 100–106 (2019). https://doi.org/10.1134/S1990519X19020081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X19020081

Keywords:

Navigation