Skip to main content
Log in

The Effect of the Arg91Gly and Glu139del Mutations in β-Tropomyosin Associated with Congenital Myopathy of Human Skeletal Muscles on Actin–Myosin Interaction

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The structural changes in proteins of the contractile apparatus of muscle fiber and the violation of their function due to point mutations in these proteins can be a cause of many hereditary diseases of human muscular tissue. Some such diseases are cap-myopathy and distal arthrogryposis, which may be connected with tropomyosin mutations. The deletion of glutamic-acid residue at position 139 of β-tropomyosin leads to the development of cap-myopathy, and the replacement of arginine at position 91 with glycine in this protein is linked to distal arthrogryposis. To understand how the Arg91Gly and Glu139del mutations disrupt the coordinated work of the contractile system of muscle fibers, recombinant wild-type and mutant β-tropomyosins were overexpressed and incorporated into thin filaments of ghost-muscle fiber. Fluorescent probes of 1,5-IAEDANS or FITC-phalloidin were specifically linked to the Cys707 of the myosin subfragment-1 and the three neighboring actin monomers, respectively. The polarized-microfluorimetry technique was used to study the spatial arrangements of actin and myosin in mimicking different stages of the ATPase cycle (in the presence of ADP or ATP and in the absence of a nucleotide) at low and high concentration of calcium ions. Both mutations were shown to change the conformational rearrangements of the myosin head and actin in the ATP hydrolysis cycle, which may be caused by abnormal behavior of the mutant tropomyosins during regulation. The altered work of the contractile system may be a cause of muscle weakness in congenital myopathies associated with these mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ATP:

adenosine triphosphoric acid

ADP:

adenosine diphosphoric acid

F-actin:

fibrillar actin

FITC:

fluorescein- 5-isothiocyanate

EGTA:

ethylene glycol tetraacetate

EDTA:

ethylenediaminetetraacetic acid

1,5-IAEDANS:

N- (iodoacetaminoethyl)-1-naphthyl-amine-5-sulfonic acid

PMSF:

phenylmethylsulfonyl fluoride

S1:

myosin subfragment-1

References

  • Borejdo, J. and Putnam, S., Polarization of flourescence from single skinned glycerinated rabbit psoas fibres in rigor and relaxation, Biochim. Biophys. Acta, 1977, vol. 459, pp. 578–595.

    Article  PubMed  CAS  Google Scholar 

  • Borovikov, Y.S., Dedova, I.V., dos Remedios, C.G., Vikhoreva, N.N., Vikhorev, P.G., Avrova, S.V., Hazlett, T.L., and Van Der Meer, B.W., Fluorescence depolarization of actin filaments in reconstructed myofibers: the effect of S1 or pPDM-S1 on movements of distinct areas of actin, Biophys. J., 2004, vol. 86, pp. 3020–3029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borovikov, Y.S., Karpicheva, O.E., Avrova, S.V., Robinson, P., and Redwood, C.S., The effect of the dilated cardiomyopathy-causing mutation Glu54Lys of alpha-tropomyosin on actin-myosin interactions during the ATPase cycle, Arch. Biochem. Biophys., 2009, vol. 489, pp. 20–24.

    Article  PubMed  CAS  Google Scholar 

  • Borovikov, Y.S., Avrova, S.V., Rysev, N.A., Sirenko, V.V., Simonyan, A.O., Chernev, A.A., Karpicheva, O.E., Piers, A., and Redwood, C.S., Aberrant movement of β-tropomyosin associated with congenital myopathy causes defective response of myosin heads and actin during the ATPase cycle, Arch. Biochem. Biophys., 2015, vol. 577–578, pp. 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Borovikov, Y.S., Rysev, N.A., Avrova, S.V., Karpicheva, O.E., Borys, D., and Moraczewska, J., Molecular mechanisms of deregulation of the thin filament associated with the R167H and K168E substitutions in tropomyosin Tpm 1, Arch. Biochem. Biophys., 2017, vol. 614, pp. 28–40.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J.H., Zhou, Z., Reshetnikova, L., Robinson, H., Yammani, R.D., Tobacman, L.S., and Cohen, C., Structure of the mid-region of tropomyosin: bending and binding sites for actin, Proc. Natl. Acad. Sci. U. S. A., 2005, vol. 102, pp. 18878–18883.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fidzianska, A., Baburska, B., Ryniewicz, B., and Dembek, I., “Cap disease”: new congenital myopathy, Neurology, 1981, vol. 31, pp. 1113–1120.

    Article  PubMed  CAS  Google Scholar 

  • Fiske, C.H. and Subbarow, Y., Determination of inorganic phosphate, J. Biol. Chem., 1925, vol. 66, pp. 375–400.

    CAS  Google Scholar 

  • Gałazkiewicz, B., Borovikov, Y.S., and Dabrowska, R., The effect of caldesmon on actin–myosin interaction in skeletal muscle fibers, Biochim. Biophys. Acta, 1987, vol. 916, pp. 368–375.

    Article  PubMed  Google Scholar 

  • Galińska-Rakoczy, A., Engel, P., Xu, C., Jung, H., Craig, R., Tobacman, L.S., and Lehman, W., Structural basis for the regulation of muscle contraction by troponin and tropomyosin, J. Mol. Biol., 2008, vol. 79, pp. 929–935.

    Article  CAS  Google Scholar 

  • Irving, M., Steady-state polarization from cylindrically symmetric fluorophores undergoing rapid restricted motion, Biophys. J., 1996, vol. 70, pp. 1830–1835.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ivanov, I.I. and Yur’ev, V.A., Biokhimiya i patobiokhimiya myshts (Biochemistry and Pathobiochemistry of Muscles), Leningrad: Medgiz, 1961.

    Google Scholar 

  • Kakol, I., Borovikov, Y.S., Szczesna, D., Kirillina, V.P., and Levitsky, D.I., Conformational changes of F-actin in myosin-free ghost fibre induced by phosphorylated or dephosphorylated heavy meromyosin, Biochim. Biophys. Acta, 1987, vol. 913, pp. 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Karpicheva, O.E., Simonyan, A.O., Kuleva, N.V., Redwood, C.S., and Borovikov, Y.S., Myopathy-causing Q147P TPM2 mutation shifts tropomyosin strands further towards the open position and increases the proportion of strong-binding cross-bridges during the ATPase cycle, Biochim. Biophys. Acta, 2016, vol. 1864, pp. 260–267.

    Article  PubMed  CAS  Google Scholar 

  • Kaulin, A.B., Polarized fluorescence of acridine orange in muscle fibers in normal and damaged, Tsitologiia, 1968, vol. 10, no. 1, pp. 123–125.

    PubMed  CAS  Google Scholar 

  • Kremneva, E., Boussouf, S., Nikolaeva, O., Maytum, R., Geeves, M.A., and Levitsky, D.I., Effects of two familial hypertrophic cardiomyopathy mutations in alpha-tropomyosin, Asp175Asn and ArgGlu180Gly, on the thermal unfolding of actin-bound tropomyosin, Biophys. J., 2004, vol. 87, pp. 3922–3933.

    PubMed  CAS  Google Scholar 

  • Lehman, W., Thin filament structure and the steric blocking model, Compr. Phisiol., 2016, vol. 6, pp. 1043–1069.

    Article  Google Scholar 

  • Lehman, W., Orzechowski, M., Li, X.E., Fischer, S., and Raunser, S., Gestalt-binding of tropomyosin on actin during thin filament activation, J. Muscle Res. Cell Motil., 2013, vol. 34, pp. 155–163.

    Article  PubMed  CAS  Google Scholar 

  • Lehtokari, V.L., Ceuterick-de Groote, C., de Jonghe, P., Marttila, M., Laing, N.G., Pelin, K., and Wallgren-Pettersson, C., Cap disease caused by heterozygous deletion of the beta-tropomyosin gene TPM2, Neuromuscul. Disord., 2007, vol. 17, pp. 433–442.

    PubMed  Google Scholar 

  • Marston, S., Memo, M., Messer, A., Papadaki, M., Nowak, K., McNamara, E., Ong, R., El-Mezgueldi, M., Li, X., and Lehman, W., Mutations in repeating structural motifs of tropomyosin cause gain of function in skeletal muscle myopathy patients, Hum. Mol. Genet., 2013, vol. 22, pp. 4978–4987.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marttila, M., Lemola, E., Wallefeld, W., Memo, M., Donner, K., Laing, N.G., Marston, S., Gronholm, M., and Wallgren-Pettersson, C., Abnormal actin binding of aberrant beta-tropomyosins is a molecular cause of muscle weakness in TPM2-related namaline and cap myopathy, Biochem. J., 2012, vol. 442, pp. 231–239.

    Article  PubMed  CAS  Google Scholar 

  • Martilla, M., Lehtokari, V.L., Marston, S., Nyman, T.A., Barnerias, C., Beggs, A.H., Bertini, E., Ceyhan-Birsoy, O., Cintas, P., Gerard, M., Gilbert-Dussardier, B., Hogue, J.S., Longman, C., Eymard, B., Frydman, M., Kang, P.B., Klinge, L., Kolski, H., Lochmüller, H., Magy, L., Manel, V., Mayer, M., Mercuri, E., North, K.N., Peudenier-Robert, S., Pihko, H., Probst, F.J., Reisin, R., Stewart, W., Taratuto, A.L., de Visser, M., Wilichowski, E., Winer, J., Nowak, K., Laing, N.G., Winder, T.L., Monnier, N., Clarke, N.F., Pelin, K., Grönholm, M., and Wallgren-Pettersson, C., Mutation update and genotype-phenotype correlations of novel and previously described mutations in TPM2 and TPM3 causing congenital myopathies, Hum. Mutat., 2014, vol. 35, pp. 779–790.

    Article  CAS  Google Scholar 

  • McKillop, D.F. and Geeves, M.A., Regulation of the interaction between actin and myosin S1: evidence for three states of the thin filament, Biophys. J., 1993, vol. 65, pp. 693–701.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muthuchamy, M., Pieples, K., Rethinasamy, P., Hoit, B., Grupp, I.L., Boivin, G.P., Wolska, B., Evans, C., Solaro, R.J., and Wieczorek, D.F., Mouse model of a familial hypertrophic cardiomyopathy mutation in alphatropomyosin manifests cardiac dysfunction, Circ. Res., 1999, vol. 85, pp. 47–56.

    Article  PubMed  CAS  Google Scholar 

  • Ochala, J., Li, M., Ohlsson, M., Oldfors, A., and Larsson, L., Defective regulation of contractile function in muscle fibres carrying an E41K beta-tropomyosin mutation, J. Physiol., 2008, vol. 586, pp. 2993–3004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oda, T., Namba, K., and Maeda, Y., Position and orientation of phalloidin in F-actin determined by X-ray fiber diffraction analysis, Biophys. J., 2005, vol. 88, pp. 2727–2736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okamoto, Y. and Sekine, T., A streamlined method of subfragment one preparation from myosin, J. Biol. Chem., 1985, vol. 98, pp. 1143–1145.

    CAS  Google Scholar 

  • Potter, J.D., Preparation of troponin and its subunits, Methods Enzymol., 1982, vol. 85, pp. 241–263.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, P., Lipscomb, S., Preston, L.C., Altin, E., Watkins, H., Ashley, C.C., and Redwood, C.S., Mutations in fast skeletal troponin I, troponin T, and beta-tropomyosin that cause distal arthrogryposis all increase contractile function, FASEB J., 2007, vol. 21, pp. 896–905.

    Article  PubMed  CAS  Google Scholar 

  • Rozanov, Y.M., Chernogryadskaya, N.A., Barskii, I.Y., Borovikov, Y.S., and Shudel, M.S., Polarized ultraviolet fluorescence of muscle fibers and some other cytological anisotropic objects, Tsitologiia, 1971, vol. 13, no. 2, pp. 190–200.

    PubMed  Google Scholar 

  • Sung, S.S., Brassington, A.M., Grannatt, K., Rutherford, A., Whitby, F.G., Krakowiak, P.A., Jorde, L.B., Carey, J.C., and Bamshad, M., Mutations in genes encoding fast-twitch contractile proteins cause distal arthrogryposis syndromes, Am. J. Hum. Genet., 2003, vol. 72, pp. 681–690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Szent-Gyorgyi, A.G., Free-energy relations, contraction of actomyosin, Biol. Bull., 1949, vol. 96, pp. 140–161.

    Article  PubMed  CAS  Google Scholar 

  • Tregear, R.T. and Mendelson, R.A., Polarization from a helix of fluorophores and its relation to that obtained from muscle, Biophys. J., 1975, vol. 15, pp. 455–467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallgren-Pettersson, C., Sewry, C.A, Nowak, K.J., and Laing, N.G., Nemaline myopathies, Semin. Pediatr. Neurol., 2011, vol. 18, pp. 230–238.

    Article  PubMed  Google Scholar 

  • Wilson, M.G.A. and Mendelson, R.A., A comparison of order and orientation of cross-bridges in rigor and relaxed muscle fibres using fluorescence polarization, J. Muscle Res. Cell Motil., 1983, vol. 4, pp. 671–693.

    Article  PubMed  CAS  Google Scholar 

  • Yanagida, T. and Oosawa, F., Polarized fluorescence from e-ADP incorporated into F-actin in a myosin-free single fibre: conformation of F-action and changes induced in it by heavy meromyosin, J. Mol. Biol., 1978, vol. 126, pp. 507–524.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Borovikov.

Additional information

Original Russian Text © N.A. Rysev, O.E. Karpicheva, V.V. Sirenko, A.O. Simonyan, C.S. Redwood, Y.S. Borovikov, 2017, published in Tsitologiya, 2017, Vol. 59, No. 12, pp. 888–896.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rysev, N.A., Karpicheva, O.E., Sirenko, V.V. et al. The Effect of the Arg91Gly and Glu139del Mutations in β-Tropomyosin Associated with Congenital Myopathy of Human Skeletal Muscles on Actin–Myosin Interaction. Cell Tiss. Biol. 12, 238–246 (2018). https://doi.org/10.1134/S1990519X18030112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X18030112

Keywords

Navigation