Skip to main content
Log in

Thiol antioxidants increase the intracellular level of reactive oxygen species and prolifetaion of SP2/0 mouse myeloma cells in serum-free medium

  • Published:
Cell and Tissue Biology Aims and scope Submit manuscript

Abstract

The connections between the presence of low molecular weight RSH-antioxidants (N-acetylcysteine, glutathione) in serum-free medium, generation of reactive oxygen species (ROS), and proliferation of SP2/0-SF mouse myeloma cells have been demonstrated. It is shown that the presence of RSH compounds in the medium within the studied range of concentrations changed the contents of ROS in cells and had a dose-dependent effect on cell proliferation. Stimulation of the proliferative activity did not depend on the nature of an RSH compound. The optimal concentration for the both antioxidants was 0.2 mM. A further increase of the concentration led to inhibition of cell proliferation to different degrees for N-acetylcysteine and glutathione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ROS:

reactive oxygen species

GSH:

reduced glutathione

NAC:

N-acetylcysteine

RSH:

thiols

References

  • Aoshiba, K., Yasui, S., Nishimura, K., and Nagai, A., Thiol depletion induces apoptosis in cultured lung fibroblasts, Am. J. Respir. Cell Mol. Biol., 1999, vol. 21, pp. 54–64.

    Article  CAS  PubMed  Google Scholar 

  • Atmaca, G., Antioxidant effects of sulfur-containing amino acids, Yonsei Med., 2004, vol. J 45, pp. 776–788.

    Article  CAS  Google Scholar 

  • Bae, Y.S., Sung, J.Y., Kim, O.S., Kim, Y.J., Hur, K.C., Kazlauskas, A., and Rhee, S.G., Platelet-derived growth factor-induced H2O2 production requires the activation of phosphatidylinositol 3-kinase, J. Biol. Chem., 2000, vol. 275, pp. 10527–10531.

    Article  CAS  PubMed  Google Scholar 

  • Broome, J.D. and Jeng, M.W., Promotion of replication in lymphoid cells by specific thiols and disulfides in vitro, J. Exp. Med., 1973, vol. 138, pp. 574–592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, E.D., Riches, D.W., and White, C.W., Redox paradox: effect of N-acetylcysteine and serum on oxidation reduction-sensitive mitogen-activated protein kinase signaling pathways, Am. J. Respir. Cell. Mol. Biol., 2001, vol. 24, pp. 627–632.

    Article  CAS  PubMed  Google Scholar 

  • Cosentino-Gomes, D. and Meyer-Fernandes, J.R., Reversible inhibition of tyrosine protein phosphatases by redox reactions, in Enzyme Inhibition and Bioapplications, InTech, 2012, pp. 253–276. www.intechopen.com

    Google Scholar 

  • Davies, K.J., The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress, IUBMB Life, 1999, vol. 48, pp. 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Deneke, S.M., Thiol-based antioxidants, Curr. Top. Cell. Regul., 2000, vol. 36, pp. 151–180.

    Article  CAS  PubMed  Google Scholar 

  • Deponte, M., Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes, Biochim. Biophys. Acta, 2013, vol. 1830, pp. 3217–3266.

    Article  CAS  PubMed  Google Scholar 

  • Efremova, T.N., Kirpichnikova, K.M., Khaitlina, S.Yu., and Gamaley, I.A., Antioxidants-induced rearrangements of actin cytoskeleton in 3T3 and 3T3-SV40 fibroblasts, Tsitologiia, 2004, vol. 46, no. 5, pp. 395–403.

    CAS  PubMed  Google Scholar 

  • Go, Y.-M., and Jones, D.P., Redox compartmentalization in eukaryotic cells, Biochim. Biophys. Acta, 2008, vol. 1780, pp. 1273–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halliwell, B., Cell culture, oxidative stress, and antioxidants: avoiding pitfalls, Biomed. J., 2014, vol. 37, pp. 99–105.

    PubMed  Google Scholar 

  • Held, K.D. and Biaglow, J.E., Mechanisms for the oxygen radical-mediated toxicity of various thiol-containing compounds in cultured mammalian cells, Radiat. Res., 1994, vol. 139, pp. 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Klebanov, G.I., Teselkin, J.O., Babenkova, I.V., Lyubitsky, O.B., and Vladimirov, Yu.A., The antioxidant activity of blood serum, Vestn. Ross. Akad. Med. Nauk., 1999, vol. 2, pp. 15–22.

    Google Scholar 

  • Lewin, G. and Popov, I., The antioxidant system of the organism. Theoretical basis and practical consequences, Med. Hypotheses, 1994, vol. 42, pp. 269–275.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Dehnade, F., and Zafarullah, M., Thiol antioxidant, N-acetylcysteine, activates extracellular signal-regulated kinase signalling pathway in articular chondrocytes, Biochem. Biophys. Res. Commun., 2000, vol. 275, pp. 789–794.

    Article  CAS  PubMed  Google Scholar 

  • Long, L.H. and Halliwell, B., Oxidation and generation of hydrogen peroxide by thiol compounds in commonly used cell culture media, Biochem. Biophys. Res. Commun., 2001, vol. 286, pp. 991–994.

    Article  CAS  Google Scholar 

  • Lyublinskaya, O.G., Kirpichnikova, K.M., and Gamaley, I.A., Antioxidant action on the level of reactive oxygen species in normal and transformed fibroblasts, Cell Tissue Biol., 2013, vol. 8, no. 1, pp. 33–38.

    Article  Google Scholar 

  • Mahadev, K., Motoshima, H., Wu, X., Ruddy, J.M., Arnold, R.S., Cheng, G., Lambeth, J.D., and Goldstein, B.J., The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction, Mol. Cell. Biol., 2004, vol. 24, pp. 1844–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon, S.G., Sarsour, E.H., Kalen, A.L., Venkataraman, S., Hitchler, M.J., Domann, F.E., Oberley, L.W., and Goswami, P.C., Superoxide signaling mediates N-acetyl-L-cysteine–induced G1 arrest: regulatory role of cyclin D1 and manganese superoxide dismutase, Cancer Res., 2007, vol. 67, pp. 6392–6399.

    Article  CAS  PubMed  Google Scholar 

  • Misra, H.P., Generation of superoxide free radical during the autoxidation of thiols, J. Biol. Chem., 1974, vol. 249, pp. 2151–2155.

    CAS  PubMed  Google Scholar 

  • Munday, R., Toxicity of thiols and disulphides: involvement of free-radical species, Free Radic. Biol. Med., 1989, vol. 7, pp. 659–673.

    Article  CAS  PubMed  Google Scholar 

  • Noda, T., Iwakiri, R., Fujimoto, K., Rhoads, C.A., and Aw, T.Y., Exogenous cysteine and cystine promote cell proliferation in CaCo-2 cells, Cell Proliferation, 2002, vol. 35, pp. 117–129.

    Article  CAS  PubMed  Google Scholar 

  • Ostman, A., Frijhoff, J., Sandin, A., and Bohmer, F.-D., Regulation of protein tyrosine phosphatases by reversible oxidation, J. Biochem., 2011, vol. 150, pp. 345–356.

    Article  PubMed  Google Scholar 

  • Sen, C.K. and Packer, L., Thiol homeostasis and supplements in physical exercise, Am. J. Clin. Nutr., 2000, vol. 72, pp. 653S–669S.

    CAS  PubMed  Google Scholar 

  • Solov’eva, M.E., Solov’ev, V.V., Faskhutdinova, A.A., Kudryavtsev, A.A., and Akatov, V.S., Prooxidant and cytotoxic action of N-acetylcysteine and glutathione in combinations with vitamin B12b, Cell Tissue Biol., 2007, vol. 1, no. 1, pp. 40–49.

    Article  Google Scholar 

  • Sundaresan, M., Yu, Z.-X., Ferrans, V.J., Irani, K., and Finkel, T., Requirement for generation of H2O2 for plateletderived growth factor signal transduction, Science, 1995, vol. 270, pp. 296–299.

    Article  CAS  PubMed  Google Scholar 

  • Tabakov, V.U., Litvina, M.M., Schepkina, J.V., Jarilin, A.A., and Chestkov, V.V., Studying the proliferation of human peripheral blood T-lymphocytes in serum-free medium, Bull. Exp. Biol. Med. (Cell Tech. Biol. Med.), 2009, vol. 147, no. 1, pp. 120–124.

    Article  CAS  Google Scholar 

  • Tabakov, V.Y., Schepkina, Y.V., and Chestkov, V.V., Modern principles of classification and development of nutrient media for culturing of human and animal cells, Bull. Exp. Biol. Med. (Cell Tech. Biol. Med.), 2013, vol. 155, no. 1, pp. 164–171.

    Article  CAS  Google Scholar 

  • Vivancos, P.D., Wolff, T., Markovich, E., Pallard, F.V., and Foyer, C.H., A nuclear glutathione cycle within the cell cycle, J. Biochem., 2010, vol. 431, pp. 169–178.

    Article  Google Scholar 

  • Waris, G. and Ahsan, H., Reactive oxygen species: role in the development of cancer and various chronic conditions, J. Carcinogenesis, 2006, vol. 5, pp. 14.

    Article  Google Scholar 

  • Whillier, S., Raftos, J.E., Chapman, B., and Kuchel, P.W., Role of N-acetylcysteine and cystine in glutathione synthesis in human erythrocytes, Redox Rep., 2009, vol. 14, pp. 115–24.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Zeng, X., Guo, J., and Wang, X., Effects of homocysteine on murine splenic B lymphocyte proliferation and its signal transduction mechanism, Cardiovas. Res., 2001, vol. 52, pp. 328–336.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Tabakov.

Additional information

Original Russian Text © V.Yu. Tabakov, N.N. Veiko, V.V. Chestkov, S.V. Kostyuk, 2016, published in Tsitologiya, 2016, Vol. 58, No. 12, pp. 924–929.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabakov, V.Y., Veiko, N.N., Chestkov, V.V. et al. Thiol antioxidants increase the intracellular level of reactive oxygen species and prolifetaion of SP2/0 mouse myeloma cells in serum-free medium. Cell Tiss. Biol. 11, 155–160 (2017). https://doi.org/10.1134/S1990519X17020067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990519X17020067

Keywords

Navigation